4,542 research outputs found

    Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating

    Get PDF
    Modes in the frequency of distribution of fission track ages obtained from detrital zircon grains may prove characteristic of individual sandstone bodies, supporting the identification of the sources from which a particular flow of sedimentary detritus was derived and thus allowing new inferences to be made concerning palaeogeography. A computer program has been written and used to identify modes in the zircon fission track age distribution within two Lower Cretaceous sandstone samples from the Weald of southern England. Pronounced modes appear in one rock around 119 Ma, 160 Ma, 243 Ma and 309 Ma and in the other around 141 Ma, 175 Ma, 257 to 277 Ma and 394 to 453 Ma. The geological implications of these quite dissimilar zircon age spectra are discussed. It is concluded that they support the palaeogeographical models of Allen (1981) and indicate that the provenance of the first sample, from the Top Ashdown Sandstone member at Dallington in East Sussex, was almost entirely southerly, while that of the second, from the Netherside Sand member at Northchapel in West Sussex, was more varied, but predominantly westerly and northerl

    Motion states inference through 3D shoulder gait analysis and Hierarchical Hidden Markov Models

    Full text link
    Automatically inferring human intention from walking movements is an important research concern in robotics and other fields of study. It is generally derived from temporal motion of limb position relative to the body. These changes can also be reected in the change of stance and gait. Conventional systems relying on gait are usually based on tracking the lower body motion (hip, foot) and are extracted from monocular camera data. However, such data can be inaccessible in crowded environments where occlusions of the lower body are prevalent. This paper proposes a novel approach to utilize upper body 3D-motion and Hierarchical Hidden Markov Models to estimate human ambulatory states, such as quietly standing, starting to walk (gait initiation), walking (gait cycle), or stopping (gait termination). Methods have been tested on real data acquired through a motion capture system where foot measurements (heels and toes) were used as ground truth data for labeling the states to train and test the models. Current results demonstrate the feasibility of using such a system to infer lower-body motion states and sub-states through observations of 3D shoulder motion online. Our results enable applications in situations where only upper body motion is readily observable

    Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance

    Get PDF
    The quantum electrodynamical (QED) process of Compton scattering in strong magnetic fields is commonly invoked in atmospheric and inner magnetospheric models of x-ray and soft gamma-ray emission in high-field pulsars and magnetars. A major influence of the field is to introduce resonances at the cyclotron frequency and its harmonics, where the incoming photon accesses thresholds for the creation of virtual electrons or positrons in intermediate states with excited Landau levels. At these resonances, the effective cross section typically exceeds the classical Thomson value by over 2 orders of magnitude. Near and above the quantum critical magnetic field of 44.13 TeraGauss, relativistic corrections must be incorporated when computing this cross section. This paper presents formalism for the QED magnetic Compton differential cross section valid for both subcritical and supercritical fields, yet restricted to scattered photons that are below pair creation threshold. Calculations are developed for the particular case of photons initially propagating along the field, mathematically simple specializations that are germane to interactions involving relativistic electrons frequently found in neutron star magnetospheres. This exposition of relativistic, quantum, magnetic Compton cross sections treats electron spin dependence fully, since this is a critical feature for describing the finite decay lifetimes of the intermediate states. The formalism employs both the Johnson and Lippmann (JL) wave functions and the Sokolov and Ternov (ST) electron eigenfunctions of the magnetic Dirac equation. The ST states are formally correct for self-consistently treating spin-dependent effects that are so important in the resonances. Relatively compact analytic forms for the cross sections are presented that will prove useful for astrophysical modelers.Comment: 45 pages, 10 figures, accepted for publication in Phys. Rev.

    Enhanced Heat Transfer from Arrays of Jets Impinging on Plates

    Get PDF
    Multiple jets of various shapes, orientation and configuration are used regularly in a wide range of engineering applications to provide heating or cooling with impingement on a plate being one of the most common configurations due to the improved heat transfer rates. Design optimization has largely relied on empirical correlations that are limited by the range over which they were originally generated. Computational Fluid Mechanics is now sufficiently advanced to be used as an alternative method for obtaining optimal designs. This project uses the commercial Fluent package to compute heat transfer from a bank of jets impinging on a plate. Results for a single jet are validated against experimental data. The use of advanced turbulence modeling and appropriate boundary layer formulations are key ingredients for obtaining reliable calculations. The heat transfer resulting form the use of multi-jet configurations will be discussed in the paper
    • 

    corecore