50 research outputs found

    \u27Struggling with Language\u27 : Indigenous movements for Linguistic Security and the Politics of Local Community

    Get PDF
    In this article, I explore the relationship between linguistic diversity and political power. Specifically, I outline some of the ways that linguistic diversity has served as a barrier to the centralization of power, thus constraining, for example, the political practice of empire-formation. A brief historical example of this dynamic is presented in the case of Spanish colonialism of the 16th-century. The article proceeds then to demonstrate how linguistic diversity remains tied to struggles against forms of domination. I argue that in contemporary indigenous movements for linguistic security, the languages themselves are not merely conceived of as the object of the political struggle, but also as the means to preserve a space for local action and deliberation – a ‘politics of local community’. I show that linguistic diversity and the devolution of political power to the local level are in a mutually reinforcing relationship. Finally, I consider the implications of this thesis for liberal theorizing on language rights, arguing that such theory cannot fully come to terms with this political-strategic dimension of language struggles

    Accelerated Evolution of the Prdm9 Speciation Gene across Diverse Metazoan Taxa

    Get PDF
    The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz) in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA–binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse) and within species (human). The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans

    A robotic platform for flow synthesis of organic compounds informed by AI planning

    No full text
    The synthesis of complex organic molecules requires several stages, from ideation to execution, that require time and effort investment from expert chemists. Here, we report a step toward a paradigm of chemical synthesis that relieves chemists from routine tasks, combining artificial intelligence–driven synthesis planning and a robotically controlled experimental platform. Synthetic routes are proposed through generalization of millions of published chemical reactions and validated in silico to maximize their likelihood of success. Additional implementation details are determined by expert chemists and recorded in reusable recipe files, which are executed by a modular continuous-flow platform that is automatically reconfigured by a robotic arm to set up the required unit operations and carry out the reaction. This strategy for computer-augmented chemical synthesis is demonstrated for 15 drug or drug-like substances
    corecore