39,343 research outputs found

    The resistible effects of Coulomb interaction on nucleus-vapor phase coexistence

    Full text link
    We explore the effects of Coulomb interaction upon the nuclear liquid vapor phase transition. Because large nuclei (A>60) are metastable objects, phases, phase coexistence, and phase transitions cannot be defined with any generality and the analogy to liquid vapor is ill-posed for these heavy systems. However, it is possible to account for the Coulomb interaction in the decay rates and obtain the coexistence phase diagram for the corresponding uncharged system.Comment: 5 pages, 5 figure

    Motivation and attitudes toward changing health (MATCH): A new patient-reported measure to inform clinical conversations.

    Get PDF
    ObjectiveTo identify and assess patient motivation to initiate or maintain behavior changes.MethodsAttitudinal statements were developed from structured patient interviews and translated into 18 survey items. Items were analyzed with exploratory factor analysis (EFA).ResultsAn EFA with 340 type 2 diabetes patients identified three areas of patient attitudes toward changing health behaviors: (1) willingness to make changes (3 items; α = 0.69), (2) perceived ability to make or maintain changes (3 items; α = 0.74), and (3) and feeling changes are worthwhile (3 items; α = 0.61). Greater perceived ability and feelings of worthwhileness were associated with positive psychosocial and behavioral management indicators. All three areas were associated with confidence and attitudes toward making a specific behavioral change (e.g., improve diet).ConclusionsMATCH is an internally consistent and valid 9-item scale that provides a profile of factors influencing motivation that can be used in clinical and research settings

    Robust non-adiabatic molecular dynamics for metals and insulators

    Full text link
    We present a new formulation of the correlated electron-ion dynamics (CEID) scheme, which systematically improves Ehrenfest dynamics by including quantum fluctuations around the mean-field atomic trajectories. We show that the method can simulate models of non-adiabatic electronic transitions, and test it against exact integration of the time-dependent Schroedinger equation. Unlike previous formulations of CEID, the accuracy of this scheme depends on a single tunable parameter which sets the level of atomic fluctuations included. The convergence to the exact dynamics by increasing the tunable parameter is demonstrated for a model two level system. This algorithm provides a smooth description of the non-adiabatic electronic transitions which satisfies the kinematic constraints (energy and momentum conservation) and preserves quantum coherence. The applicability of this algorithm to more complex atomic systems is discussed.Comment: 36 pages, 5 figures. Accepted for publication in Journal of Chemical Physic

    Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions

    Get PDF
    One of the most promising proposals for engineering topological superconductivity and Majorana fermions employs a spin-orbit coupled nanowire subjected to a magnetic field and proximate to an s-wave superconductor. When only part of the wire's length contacts to the superconductor, the remaining conducting portion serves as a natural lead that can be used to probe these Majorana modes via tunneling. The enhanced role of interactions in one dimension dictates that this configuration should be viewed as a superconductor-Luttinger liquid junction. We investigate such junctions between both helical and spinful Luttinger liquids, and topological as well as non-topological superconductors. We determine the phase diagram for each case and show that universal low-energy transport in these systems is governed by fixed points describing either perfect normal reflection or perfect Andreev reflection. In addition to capturing (in some instances) the familiar Majorana-mediated `zero-bias anomaly' in a new framework, we show that interactions yield dramatic consequences in certain regimes. Indeed, we establish that strong repulsion removes this conductance anomaly altogether while strong attraction produces dynamically generated effective Majorana modes even in a junction with a trivial superconductor. Interactions further lead to striking signatures in the local density of states and the line-shape of the conductance peak at finite voltage, and also are essential for establishing smoking-gun transport signatures of Majorana fermions in spinful Luttinger liquid junctions.Comment: 25 pages, 6 figures, v

    Compound nuclear decay and the liquid to vapor phase transition: a physical picture

    Full text link
    Analyses of multifragmentation in terms of the Fisher droplet model (FDM) and the associated construction of a nuclear phase diagram bring forth the problem of the actual existence of the nuclear vapor phase and the meaning of its associated pressure. We present here a physical picture of fragment production from excited nuclei that solves this problem and establishes the relationship between the FDM and the standard compound nucleus decay rate for rare particles emitted in first-chance decay. The compound thermal emission picture is formally equivalent to a FDM-like equilibrium description and avoids the problem of the vapor while also explaining the observation of Boltzmann-like distribution of emission times. In this picture a simple Fermi gas thermometric relation is naturally justified and verified in the fragment yields and time scales. Low energy compound nucleus fragment yields scale according to the FDM and lead to an estimate of the infinite symmetric nuclear matter critical temperature between 18 and 27 MeV depending on the choice of the surface energy coefficient of nuclear matter.Comment: Five page two column pages, four figures, submitted to Phys. Rev.

    Low frequency response of a collectively pinned vortex manifold

    Full text link
    A low frequency dynamic response of a vortex manifold in type-II superconductor can be associated with thermally activated tunneling of large portions of the manifold between pairs of metastable states (two-level systems). We suggest that statistical properties of these states can be verified by using the same approach for the analysis of thermal fluctuations the behaviour of which is well known. We find the form of the response for the general case of vortex manifold with non-dispersive elastic moduli and for the case of thin superconducting film for which the compressibility modulus is always non-local.Comment: 8 pages, no figures, ReVTeX, the final version. Text strongly modified, all the results unchange
    • …
    corecore