1,437 research outputs found

    Modulating the Expression of Disease Genes with RNA-Based Therapy

    Get PDF
    Conventional gene therapy has focused largely on gene replacement in target cells. However, progress from basic research to the clinic has been slow for reasons relating principally to the challenges of heterologous DNA delivery and regulation in vivo. Alternative approaches targeting RNA have the potential to circumvent some of these difficulties, particularly as the active therapeutic molecules are usually short oligonucleotides and the target gene transcript is under endogenous regulation. RNA-based strategies offer a series of novel therapeutic applications, including altered processing of the target pre-mRNA transcript, reprogramming of genetic defects through mRNA repair, and the targeted silencing of allele- or isoform-specific gene transcripts. This review examines the potential of RNA therapeutics, focusing on antisense oligonucleotide modification of pre-mRNA splicing, methods for pre-mRNA trans-splicing, and the isoform- and allele-specific applications of RNA interference

    TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander

    Get PDF
    In 2006 the protein TDP-43 was identified as the major ubiquitinated component deposited in the inclusion bodies found in two human neurodegenerative diseases, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The pathogenesis of both disorders is unclear, although they are related by having some overlap of symptoms and now by the shared histopathology of TDP-43 deposition. Now, in 2008, several papers have been published in quick succession describing mutations in the TDP-43 gene, showing they can be a primary cause of amyotrophic lateral sclerosis. There are many precedents in neurodegenerative disease in which rare single-gene mutations have given great insight into understanding disease processes, which is why the TDP-43 mutations are potentially very important

    The Genetics of Axonal Transport and Axonal Transport Disorders

    Get PDF
    Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases

    Mouse cytoplasmic dynein intermediate chains: identification of new isoforms, alternative splicing and tissue distribution of transcripts

    Get PDF
    BACKGROUND: Intracellular transport of cargoes including organelles, vesicles, signalling molecules, protein complexes, and RNAs, is essential for normal function of eukaryotic cells. The cytoplasmic dynein complex is an important motor that moves cargos along microtubule tracks within the cell. In mammals this multiprotein complex includes dynein intermediate chains 1 and 2 which are encoded by two genes, Dync1i1 and Dync1i2. These proteins are involved in dynein cargo binding and dynein complexes with different intermediate chains bind to specific cargoes, although the mechanisms to achieve this are not known. The DYNC1I1 and DYNC1I2 proteins are translated from different splice isoforms, and specific forms of each protein are essential for the function of different dynein complexes in neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here we have undertaken a systematic survey of the dynein intermediate chain splice isoforms in mouse, basing our study on mRNA expression patterns in a range of tissues, and on bioinformatics analysis of mouse, rat and human genomic and cDNA sequences. We found a complex pattern of alternative splicing of both dynein intermediate chain genes, with maximum complexity in the embryonic and adult nervous system. We have found novel transcripts, including some with orthologues in human and rat, and a new promoter and alternative non-coding exon 1 for Dync1i2. CONCLUSIONS/SIGNIFICANCE: These data, including the cloned isoforms will be essential for understanding the role of intermediate chains in the cytoplasmic dynein complex, particularly their role in cargo binding within individual tissues including different brain regions

    A Look to Future Directions in Gene Therapy Research for Monogenic Diseases

    Get PDF
    The concept of gene therapy has long appealed to biomedical researchers and clinicians because it promised to treat certain diseases at their origins. In the last several years, there have been several trials in which patients have benefited from gene therapy protocols. This progress, however, has revealed important problems, including the problem of insertional oncogenesis. In this review, which focuses on monogenic diseases, we discuss the problem of insertional oncogenesis and identify areas for future research, such as developing more quantitative assays for risk and efficacy, and ways of minimizing the genotoxic effects of gene therapy protocols, which will be important if gene therapy is to fulfill its conceptual promise

    Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization

    Get PDF
    One of the challenges of genomic research after the completion of the human genome project is to assign a function to all the genes and to understand their interactions and organizations. Among the various techniques, the emergence of chromosome engineering tools with the aim to manipulate large genomic regions in the mouse model offers a powerful way to accelerate the discovery of gene functions and provides more mouse models to study normal and pathological developmental processes associated with aneuploidy. The combination of gene targeting in ES cells, recombinase technology, and other techniques makes it possible to generate new chromosomes carrying specific and defined deletions, duplications, inversions, and translocations that are accelerating functional analysis. This review presents the current status of chromosome engineering techniques and discusses the different applications as well as the implication of these new techniques in future research to better understand the function of chromosomal organization and structures

    Mutant glycyl-tRNA synthetase (Gars) ameliorates SOD1G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice

    Get PDF
    Background: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal findings: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars^{C201R/+} mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars^{C201R/+} mice to two other mutants: the TgSOD1^{G93A} model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1^{Loa}) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1^{Loa/+}; Gars^{C201R/+} double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars^{C201R} mutation significantly delayed disease onset in the SOD1^{G93A}; Gars^{C201R/+} double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains

    Copy Number Variants and Common Disorders: Filling the Gaps and Exploring Complexity in Genome-Wide Association Studies

    Get PDF
    Genome-wide association scans (GWASs) using single nucleotide polymorphisms (SNPs) have been completed successfully for several common disorders and have detected over 30 new associations. Considering the large sample sizes and genome-wide SNP coverage of the scans, one might have expected many of the common variants underpinning the genetic component of various disorders to have been identified by now. However, these studies have not evaluated the contribution of other forms of genetic variation, such as structural variation, mainly in the form of copy number variants (CNVs). Known CNVs account for over 15% of the assembled human genome sequence. Since CNVs are not easily tagged by SNPs, might have a wide range of copy number variability, and often fall in genomic regions not well covered by whole-genome arrays or not genotyped by the HapMap project, current GWASs have largely missed the contribution of CNVs to complex disorders. In fact, some CNVs have already been reported to show association with several complex disorders using candidate gene/region approaches, underpinning the importance of regions not investigated in current GWASs. This reveals the need for new generation arrays (some already in the market) and the use of tailored approaches to explore the full dimension of genome variability beyond the single nucleotide scale

    The Ames Virtual Environment Workstation: Implementation issues and requirements

    Get PDF
    This presentation describes recent developments in the implementation of a virtual environment workstation in the Aerospace Human Factors Research Division of NASA's Ames Research Center. Introductory discussions are presented on the primary research objectives and applications of the system and on the system's current hardware and software configuration. Principle attention is then focused on unique issues and problems encountered in the workstation's development with emphasis on its ability to meet original design specifications for computational graphics performance and for associated human factors requirements necessary to provide compelling sense of presence and efficient interaction in the virtual environment
    corecore