2 research outputs found

    Biologically Inspired Connected Advanced Driver Assistance Systems

    Get PDF
    Advanced Driver Assistance Systems (ADAS) have become commonplace in the automotive industry over the last few decades. Even with the advent of ADAS, however, there are still a significant number of accidents and fatalities. ADAS has in some instances been shown to significantly reduce the number and severity of accidents. Manufacturers are working to avoid ADAS plateauing for effectiveness, which has led the industry to pursue various avenues of investment to ascend the next mountain of challenges – vehicle autonomy, smart mobility, connectivity, and electrification – for reducing accidents and injuries. A number of studies pertaining to ADAS scrutinize a specific ADAS technology for its effectiveness at mitigating accidents and reducing injury severity. A few studies take holistic accounts of ADAS. There are a number of directions ADAS could be further progressed. Industry manufacturers are improving existing ADAS technologies through multiple avenues of technology advancement. A number of ADAS systems have already been improved from passive, alert or warning, systems to active systems which provide early warning and if no action is taken will control the vehicle to avoid a collision or reduce the impact of the collision. Studies about the individual ADAS technologies have found significant improvement for reduction in collisions, but when evaluating the actual vehicles driving the performance of ADAS has been fairly constant since 2015. At the same time, industry is looking at networking vehicle ADAS with fixed infrastructure or with other vehicles’ ADAS. The present literature surrounding connected ADAS be it with fixed systems or other vehicles with ADAS focuses on the why and the how information is passed between vehicles. The ultimate goal of ADAS and connected ADAS is the development of autonomous vehicles. Biologically inspired systems provide an intriguing avenue for examination by applying self-organization found in biological communities to connecting ADAS among vehicles and fixed systems. Biological systems developed over millions of years to become highly organized and efficient. Biological inspiration has been used with much success in several engineering and science disciplines to optimize processes and designs. Applying movement patterns found in nature to automotive transportation is a rational progression. This work strategizes how to further the effectiveness of ADAS through the connection of ADAS with supporting assets both fixed systems and other vehicles with ADAS based on biological inspiration. The connection priorities will be refined by the relative positioning of the assets interacting with a particular vehicle’s ADAS. Then based on the relative positioning data distribution among systems will be stratified based on level of relevance. This will reduce the processing time for incorporating the external data into the ADAS actions. This dissertation contributes to the present understanding of ADAS effectiveness in real-world situations and set forth a method for how to optimally connect local ADAS vehicles following from biological inspiration. Also, there will be a better understanding of how ADAS reduces accidents and injury severity. The method for how to structure an ADAS network will provide a framework for auto-manufacturers for the development of their proprietary networked ADAS. This method will lead to a new horizon for reducing accidents and injury severity through the design of connecting ADAS equipped vehicles.Ph.D

    The Best and Worst of Contracts Decisions: An Anthology

    No full text
    corecore