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SUMMARY 

Advanced Driver Assistance Systems (ADAS) have become commonplace in the 

automotive industry over the last few decades. Even with the advent of ADAS, however, 

there are still a significant number of accidents and fatalities. ADAS has in some instances 

been shown to significantly reduce the number and severity of accidents. Manufacturers 

are working to avoid ADAS plateauing for effectiveness, which has led the industry to 

pursue various avenues of investment to ascend the next mountain of challenges – vehicle 

autonomy, smart mobility, connectivity, and electrification – for reducing accidents and 

injuries. A number of studies pertaining to ADAS scrutinize a specific ADAS technology 

for its effectiveness at mitigating accidents and reducing injury severity. A few studies take 

holistic accounts of ADAS. There are a number of directions ADAS could be further 

progressed. Industry manufacturers are improving existing ADAS technologies through 

multiple avenues of technology advancement. A number of ADAS systems have already 

been improved from passive, alert or warning, systems to active systems which provide 

early warning and if no action is taken will control the vehicle to avoid a collision or reduce 

the impact of the collision. Studies about the individual ADAS technologies have found 

significant improvement for reduction in collisions, but when evaluating the actual vehicles 

driving the performance of ADAS has been fairly constant since 2015. At the same time, 

industry is looking at networking vehicle ADAS with fixed infrastructure or with other 

vehicles’ ADAS. The present literature surrounding connected ADAS be it with fixed 

systems or other vehicles with ADAS focuses on the why and the how information is 



 xvii 

passed between vehicles. The ultimate goal of ADAS and connected ADAS is the 

development of autonomous vehicles.  

Biologically inspired systems provide an intriguing avenue for examination by 

applying self-organization found in biological communities to connecting ADAS among 

vehicles and fixed systems. Biological systems developed over millions of years to become 

highly organized and efficient. Biological inspiration has been used with much success in 

several engineering and science disciplines to optimize processes and designs. Applying 

movement patterns found in nature to automotive transportation is a rational progression. 

This work strategizes how to further the effectiveness of ADAS through the 

connection of ADAS with supporting assets both fixed systems and other vehicles with 

ADAS based on biological inspiration. The connection priorities will be refined by the 

relative positioning of the assets interacting with a particular vehicle’s ADAS. Then based 

on the relative positioning data distribution among systems will be stratified based on level 

of relevance. This will reduce the processing time for incorporating the external data into 

the ADAS actions.  

This dissertation contributes to the present understanding of ADAS effectiveness 

in real-world situations and set forth a method for how to optimally connect local ADAS 

vehicles following from biological inspiration. Also, there will be a better understanding 

of how ADAS reduces accidents and injury severity. The method for how to structure an 

ADAS network will provide a framework for auto-manufacturers for the development of 

their proprietary networked ADAS. This method will lead to a new horizon for reducing 

accidents and injury severity through the design of connecting ADAS equipped vehicles. 



 1 

CHAPTER 1. INTRODUCTION 

1.1 Motivation 

1.1.1 Health 

In 2018 the World Health Organization (WHO) published that 1.35 million people 

worldwide had died in road accidents in 2016, which is an increase from 1.15 million 

people who died in 2000 (Organization 2018). The trend of fatalities has been reported 

consistently by the WHO which in 2004 estimated that nearly 1.2 million people are fatally 

injured in automotive accidents with another 50 million receiving lesser injuries (Murray, 

Lopez et al. 2001, Peden, Scurfield et al. 2004). At that time, 2004, the WHO believed that 

those values could rise by up to 65% between 2000 and 2020 (Kopits , Murray, Lopez et 

al. 1996). While the rate of death in that time per 100,000 has decreased from 18.8 to 18.2, 

there exists a disparity between low-income countries, where the average per 100,000 is 

27.5, and high-income countries, where the average per 100,000 is 8.3 (Organization 

2018). Human error is thought to be the reason for 90% of all automotive accidents by the 

WHO, which has set the removal of human error as a priority (Peden, Scurfield et al. 2004). 

1.1.2 Full-Size Light-Duty Pickup Trucks (FSLDPTs) 

Each year, over 30,000 Americans are killed in motor vehicle accidents and 

approximately a third of those accidents involve FSLDPTs with a Gross Vehicle Weight 

(GVW) of 5,000 to 10,000 lbs. (NHTSA 2010, NHTSA 2011, NHTSA 2012, NHTSA 

2013, NHTSA 2014, Mosquet, Andersen et al. 2015, NHTSA 2015, NHTSA 2016, 

NHTSA 2017, NHTSA 2018). Trucks make up approximately 56% of all registered 
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vehicles in the United States (Administration 2019) with FSLDPT comprising 18% 

(Company 2020). This is a significant percentage of the vehicle population in the United 

States, which has been neglected to be studied. FSLDPTs are larger, less maneuverable, 

and they tend to have larger blind spots than sedans (ConsumerReports 2014). When it 

pertains to trucks, studies favor evaluating heavy/freight trucks because of their commerce 

usage. Freight Trucks have been using ADAS since the 90s (Kunze, Haberstroh et al. 

2011); whereas, FSLDPTs have only recently adopted ADAS in the last decade. Due to the 

size, weight, and towing differences between pickup trucks and freight trucks studies about 

the safety and effectiveness of ADAS in freight trucks cannot be translated to pickup trucks 

(Jones 2019). For the United States, the significant percentage FSLDPT represent of 

registered vehicles signifies a critical component of the US transportation network that has 

been neglected in terms of evaluation of ADAS performance.  

1.1.3 Financial 

With the push to remove/reduce human error in driving, there is arguably only so 

much that consumers are willing to pay for an uncertain amount of increased vehicle safety. 

In a study conducted by the Boston Consulting Group in 2015, the cost of all ADAS 

features was greater than the consumer’s willingness to pay for the features (Mosquet, 

Andersen et al. 2015). For Adaptive Cruise Control, Forward Collision Warning, and Front 

Sensors the disparity was over $1000 (Mosquet, Andersen et al. 2015). Since the time of 

the Boston Consulting Group’s study, ADAS have been improved to a level that is 

marketed as being able to provide a high degree of safety with a reduction to the upfront 

cost to the consumer. The future fatalities projected by the WHO back in 2004 may have 

been curbed due to the greater availability of ADAS equipped vehicles in high-income 
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countries. This would potentially explain the disparity in rate of death per 100,000 between 

high- and low-income countries. In order for the rates to be more equitable, the economics 

of ADAS must be considered if any real improvement to safety in the real-world is to be 

achieved.  

1.1.4 Industry 

Research into ADAS has been conducted for over two decades in various aspects. 

This research can be divided among a few areas of interest – insurance, component, 

consumer response, and platooning/networking. Studies concerning insurance look at how 

a technology, set of technologies, driver actions/characteristics, or environmental factors 

affect driver safety (Williams 1985, Meng, Wevers et al. 2004, Braitman, McCartt et al. 

2010, Neelima Chakrabartya 2013, Eichelberger and McCartt 2014, Li, Werber et al. 2014, 

Administration 2015, Blincoe, Miller et al. 2015, Cicchino and McCartt 2015, Fildes, Keall 

et al. 2015, Eichelberger and McCartt 2016, Institute 2016, Isaksson-Hellman and Lindman 

2016, Cicchino 2017, Cicchino 2017, Cicchino and Zuby 2017, Jermakian, Bao et al. 2017, 

Sternlund, Strandroth et al. 2017, Association 2018, Cicchino 2018, Cicchino 2018, 

Institute 2018, Reagan, Cicchino et al. 2018, Yue, Abdel-Aty et al. 2018, Cicchino 2019, 

Cicchino 2019, Institute 2019, Insurance Institute for Highway Safety 2019, Insurance 

Institute for Highway Safety 2019, Kidd and Reagan 2019, NHTSA 2019, National Safety 

Council 2020). A large portion of these studies were conducted by researchers for the 

Insurance Institute for Highway Safety (IIHS), which focused predominately on individual 

technologies and suits of technologies. These studies crossover with component studies 

which look at the effectiveness of a technology or suite of technologies, but component 

research also includes development and improvement of the technology or suite of 
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technologies (Fildes, Keall et al. 2015, Eichelberger and McCartt 2016, Isaksson-Hellman 

and Lindman 2016, Cicchino 2017, Cicchino 2017, Sternlund, Strandroth et al. 2017, 

Cicchino 2018, Cicchino 2018, Kukkala, Tunnell et al. 2018, Cicchino 2019, Cicchino 

2019, Kidd and Reagan 2019). The third category of ADAS research is consumer response, 

which looks at aspects of willingness to pay and technology acceptance (Molin and 

Marchau 2004, ConsumerReports 2014, Mosquet, Andersen et al. 2015, Choi, Thalmayr 

et al. 2016, Mosquet, Andersen et al. 2016, Reagan, Cicchino et al. 2018, Daniel Holland-

Letz 2019, Beiker and Burgelman 2020, Maike Schlumbohm 2020, Preston 2020). These 

studies include research by consulting firms such as the Boston Consulting Group, and 

their findings are used by manufacturers as guidance for increasing consumer acceptance 

of ADAS. Studies on platooning and networking of ADAS vehicles have largely looked at 

simulations and limited vehicle tests (Nadeem, Dashtinezhad et al. 2004, Yang, Liu et al. 

2004, Kunze, Haberstroh et al. 2011, Hafner, Cunningham et al. 2013, Sun, Tang et al. 

2017, Yuan, Tasik et al. 2020).  

The research builds on all four of the aforementioned areas of interest and 

incorporates self-organization that are founded on biologically inspired rules pertaining to 

movement behavior. 

1.2 Research Questions and Goals 

This section introduces the overall research question and outlines research goals and 

fundamental contributions that will result from answering this question.  

1.2.1 Overall Research Question (RQ) 
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 Does biological inspiration, in the form of communication pertaining to movement 

behavior, for the design of connected ADAS lead to an improvement of ADAS as measured 

by reductions in costs – upfront and post-accident – and improved performance – reduction 

of accidents and injury severity. 

1.2.2 Research Goals (RGs) 

RG1.  Quantitatively determine the statistical significance of ADAS at reducing 

injury severity and identify key factors that contribute to the performance of the ADAS 

technology derived from the National Highway Traffic Safety Administration 

(NHTSA) Fatality Analysis Reporting System (FARS) database. 

RG2.  Determine what regions/zones of the vehicle should be identified as 

possessing room for improvement based on heuristics of accidents and financial 

considerations regarding upfront and post-accident expenditures.  

RG3.  Identify biological communication for movement to address the 

performance gaps identified in RG2, diminishing the incidence of these regions being 

collide with to better align with the other regions of the vehicle. 

RG4.  Postulate the projected performance improvement and costing along the two 

branches – continued refinement of existing ADAS and development of V2X ADAS 

interface – being pursued by industry for enhancing ADAS. 

1.3 Contributions and Significance 

This dissertation advances the work being done in ADAS technology development through 

modeling and simulation grounded in quantified real-world data. Even though limited real-
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world data has been used to in models and simulations of motor vehicle accidents, the 

incorporation of biologically inspired self-organization for cohort movement has not been 

proposed or evaluated for efficacy of mitigating automotive accidents and injuries.  

The anticipated outcomes of this research are: 

(i) A biologically inspired connected vehicle model validated through simulations that 

combines the human engineered system and biological solutions. The biologically 

inspired model would provide guidance for the connection of vehicles which is 

suitable for the industrial sector to develop derivatives for V2X networks. This 

novel approach would orient manufacturers for the development of the next 

generation of ADAS technologies. 

(ii) The first study the effectiveness of ADAS in FSLDPTs. This would provide insight 

to a large percentage (18%) of registered vehicles on the roads in the United States 

that has been neglected in past studies of ADAS because of its exclusivity of being 

neither a sedan nor a freight truck. Stochastic and heuristic findings of FSLDPTs 

would benefit governments at both the municipal and federal levels for drafting and 

enacting transportation laws. 

(iii)A dissemination of which ADAS technologies were effective at reducing accidents 

and reducing the severity of injuries contrasted to those which exist for driver 

convenience. This translates to auto-manufacturers being able to stratify which 

technologies are worth continued improvement, which are satisfactory as is, or 

which could be depreciated while still providing the same level of aptitude. 

Currently, there is research and investments being made in every aspect of ADAS 

technologies. This contribution would inform the research community where to 

focus their efforts to provide the largest return on investment.  

(iv) An insight into the economics of ADAS regarding costing and pricing. By 

evaluating the cost to the consumer for the level of additional safety provided by 

ADAS technologies offered by a particular auto-manufacturer relative to other 

auto-manufacturers, the consumer would be better equipped to make a 

conscientious decision when purchasing a vehicle. Auto-manufacturers would gain 

knowledge of how much to invest to see improvement in vehicle safety. 
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1.4 Research Plan 

The research question (RQ) and goals (RGs) are answered by completing the 

following research tasks (RT). 

1.4.1 Research Tasks (RT) 

RT1. Collect real-world accident data with thorough literature reviews, data mining, 

financial reports, and internet searches. 

RT2. Collect information on biological principles of self-organization for 

comparison, with thorough literature reviews and internet searches. 

RT3.  Analyze the datasets of real-world data using heuristics and stochastic analysis 

with a focus on FSLDPTs. 

a. Compare the heuristics for the FSLDPTs among all seven automobile 

manufacturers. 

b. Breakout the FSLDPTs with ADAS from the rest of the FSLDPTs. 

i. Identify a common grouping for FSLDPTs with ADAS for a 

relative comparison among the brands. 

ii. Identify factor(s) that can be used to assess the performance of 

ADAS. 

c. Perform stochastic analysis to determine statistical significance of 

FSLDPT with ADAS performance. 

d. Perform stochastic analysis to determine contributing factors statistical 

significance of FSLDPT with ADAS performance. 
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RT4. Analyze the economic metrics associated with cost of an accident. 

a. Optimize impact location selection using repair cost, injury cost, and 

injury severity for determination of best and worst vehicle locations to 

be impacted. 

RT5. Investigate whether it is better for automobile manufacturers to continue the 

present trajectory of ADAS development or explore V2V based on biological 

inspiration. 

a. Use existing accident data to develop a model for future accidents based 

on current trends in accident/injury reduction. 

b. Using biological inspired self-organization as a benchmark to develop 

a model for vehicles using present ADAS accident data in a V2V setup. 

1.4.2 Detailed Work Plan 

RT1: A detailed and exhaustive set of accident automotive data is a vital component for 

this research. There exist multiple avenues for ascertaining this data following a thorough 

literature reviews, data mining, financial reporting, and internet searches. Literature 

includes (but not limited to) consumer reports, government reports, traffic journals, 

accident journals, consulting firm reports, insurance reports, and technical journals. Data 

mining is available through insurance agencies, NHTSA, IIHS, state government accident 

reports. Financial reporting will be obtained through SEC annual reports such as company 

10-K and 20-F reports. Internet searches include (but not limited to) sales brochures and 

traffic safety factsheets. As for obtaining real-world complete and detailed accident data 
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there exists no such data set. Partial sets are available through insurance agencies; however, 

these are proprietary data sets and due to privacy laws are next to impossible to obtain. 

Each state produces limited detailed fatal accident reports that are inconsistent from state 

to state making unification of these independent incongruent datasets unrealistic. By 

limiting the real-world data to a complete and detailed set of accidents resulting in one or 

more fatalities, a useful and detailed data set is obtainable from NHTSA known as FARS. 

NHTSA also produces a speculative dataset that generalizes non-fatal accidents known as 

the Crash Report Sampling System (CRSS). The NHTSA FARS data can be organized and 

sorted be queried and analyzed in RT3. 

RT2: Self   organized   movement   in aggregations of organisms (i.e. swarms, flocks, 

schools) is a common occurrence in nature. A thorough literature review of academic 

journals was conducted. The patterns and trends from literature will be combined with the 

data analyzed from RT3 to construct a model for RT5’s biologically inspired V2V (vehicle-

to-vehicle) self-organization. While there are V2V models that have been developed, none 

of those models have looked at incorporating biologically inspired patterns for self-

organization of cohort movement. Some existing research for V2X (vehicle-to-

infrastructure/vehicle) points out the limitations of data transfer between sender and 

receiver (Nadeem, Dashtinezhad et al. 2004). Other research in V2X deals with how the 

vehicles interact to avoid accidents based on how the research perceives a system should 

work (Yang, Liu et al. 2004, Kunze, Haberstroh et al. 2011, Hafner, Cunningham et al. 

2013, Yuan, Tasik et al. 2020). This work will use biological inspiration for the 

methodology of how V2V should interact, which has not been applied previously by other 

researchers.  
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RT3: The data assembled (NHTSA FARS) and organized as part of RT1 is filtered for the 

seven FSLDPTs. The data is then graphed to visualize the factors in the dataset. From the 

factors identify those that can be used to compare the accidents (Level of Injury and 

Damage Severity). Comparing the two factors identified for comparing accidents to select 

one factor (Level of Injury) to use for all comparisons. The seven brands of FSLDPTs are 

normalized by dividing the total accidents by the number of units sold in the corresponding 

year found using financial reports and internet searches. Then FSLDPT brands can be 

compared now they are normalized using the factors from the dataset. The FSLDPTs 

equipped with ADAS will then be broken out using identifying factors from the dataset. 

Should factors such as VIN not be complete, for protecting personal identifiable 

information, other factors to stratify FSLDPTs with ADAS and those without ADAS will 

be identified through the means of association of other factors. These other factors can be 

identified through the use of sales brochures. Now with ADAS FSLDPTs identified, 

stochastic analysis such as ANOVA tests to identify factors that influence the performance 

of ADAS FSLDPTs. The ANOVA test (analysis of variance test) is a stochastic tool that 

compares the variances of two or more groups of data. The ANOVA test determines if the 

datasets are in fact the same datasets or different distinct sets of data. If there is no real 

difference between the datasets, the null hypothesis, the result of the ANOVA P-value (or 

F-ratio) will be near 1, and if there is a significant difference between the datasets, the 

result of the ANOVA P-value will be less than 0.05. By convention, statistical significance 

is set as a P-value less than 0.05, which indicates there is a less than a 5% probability that 

the two datasets are from the same population. In this research a single factor ANOVA is 

used with the independent variable used in the test is the Level of Injury. The one-way 
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ANOVA is selected over the two-way ANOVA due to the other possible variable for 

comparison (Damage Severity) not being independent of Level of Injury. From the factors 

identified as being significant contributors to the performance of ADAS, they are then 

tested using the ANCOVA test to identify any covariables that in combination would 

contribute to the performance of ADAS. ANCOVA is similar to ANOVA but accounts for 

additional continuous ordinal variables for determining grouping of data significance. 

RT4: The only way automotive manufacturers will change how they are deploying ADAS 

technology is if market forces shift their interests. Economics of accidents is one of such 

market forces that can have that effect. Using economic and accident data obtained in RT1 

to create a model that can be optimized to indicate where the most expensive and severe 

impacts occur for an accident will be used to justify future deployment needs and designs 

of ADAS technologies. It also will help distinguish between ADAS for safety and ADAS 

for convenience. By using a single dataset for pricing of components (Automotive 2019), 

even if the quoted values for the components is inaccurate the relativism of the pricing used 

in the model will be consistent. The results from the optimization support RT5a for 

reasoning on what needs continued improvement and investment and RT5b for what issue 

doe the biological inspiration need to address most predominately.  

RT5: Comparing the two directions (current ADAS and Bio-inspired ADAS) that could 

be taken for the next stage of ADAS development is a quantitative method for deciding the 

best investments for automotive manufacturers and researchers. RT5a is a regression 

analysis based on the trends in investment, pricing, accident occurrence, and injury 

severity. The regression analysis will then be projected forward to predict what can be 

expected from the continued course of ADAS development. RT5b involves developing a 
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model for CV using patterns of biologically inspired self-organized cohort movement. The 

patterns from fish and birds will be a strong influence on the model as these two classes of 

animals behave similarly for self-organization for cohort movement. They will also be used 

to examine the information passed between the CVs and for recognizing which vehicles 

should communicate. These two tasks’ resultant models will then be compared for accident 

occurrence, injury severity, and associated costs for each model.  

1.5 Assumptions 

This research makes two assumptions regarding the data used for the construction 

of models. The first assumption stems from the use of NHTSA’s FARS dataset, which only 

includes accidents where someone involved in the accident perished. Here it is assumed 

that the behavior of the vehicle mechanics is similar enough to those involved in non-fatal 

accidents that findings from the FARS dataset can be interpolated to non-fatal accidents. 

With data regarding non-fatal accidents not being as consistently detailed and 

comprehensive, the FARS dataset from NHTSA is the best source for real-world data 

regarding accidents.  

The second limitation made by this research is that FSLDPTs, which comprise 

about 20% of the vehicles on the road, are suitable agents to evaluate the effectiveness of 

ADAS. Models built using the trends found from evaluating FSLDPT accident data are 

commutable to the general population of vehicles. Inevitably, there will be some 

differences in the behavior of different vehicle makes and models. The methodologies 

proposed in this research could be applied to a more extensive body of data regarding 

ADAS effectiveness, but the prospect of substantial differences in outcomes is unlikely. 
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1.6 Dissertation Layout 

This dissertation covers a range of aspects regarding the development of ADAS 

from currently deployed systems on Full-Size Light-Duty Pickup Trucks (FSLDPTs) to 

biological inspirations for possible future generations of ADAS. Following this 

introduction, a thorough literature review covers biological principles that could be applied 

to vehicle safety. Topics covered are progression of vehicle safety, biological self-

organization, biological communication, current state of swarm robotics, a look at the 

economics of the automotive industry. Highlighted in the review is the largest gap in 

evaluating the effectiveness of ADAS that is the FSLDPT.  

Chapter 3 then evaluates the process of driving through the use of functional 

decompositions and flow diagrams. The actions done during driving to avoid being in a 

crash are functionally decomposed and areas for possible improvement from biological 

principles are identified. This process is then inversed to look at how a vehicle gets into a 

crash as a way to ensure all relevant topics are covered. 

Next, Chapter 4 analyzes the current effectiveness of ADAS in FSLDPTs. It 

partitions the evaluations of ADAS into factors of interest, the seven different main 

FSLDPT models, how ADAS performs during adverse conditions, and the economics of 

ADAS. These findings are then incorporated into the simulations of Chapter 5. There the 

data analyzed in Chapter 4 is used to find optimized positioning of ADAS as well as discuss 

the environmental sustainability of ADAS. The chapter is rounded out by proposing what 

future ADAS design will be improved based on following of its present design trajectory.  
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Chapter 6 then breaks into what a new path for ADAS could be using principles 

pulled from biological systems. This reaches back to the biological findings from Chapter 

2 and applies them to vehicle safety. A path is proposed based on all the findings and then 

evaluated in Chapter 7. In Chapter 7, both analytical analysis and optimizations are used 

to determine if a biologically inspired connected ADAS (BICADAS) could prevent 

crashes. The results are then compared to a human driver’s performance under the same 

conditions, and then BICADAS is compared to ADAS in Chapter 8. The comparison is 

done on the grounds of crash prevention, technology costs, and other sustainability 

benefits. 

1.7 Summary 

Does biological inspiration, in the form of communication pertaining to movement 

behavior, for the design of connected ADAS lead to an improvement of ADAS as measured 

by reductions in costs – upfront and post-accident – and improved performance – reduction 

of accidents and injury severity? This proposed research question by this work, developed 

with the goal of reducing automotive crashes. The overall goal and question are answered 

through the completion of a series of tasks outline that examine the utility of biological 

principles and how they may be applied to vehicle safety. The completion of these tasks 

result in a set of primary and secondary research contributions that significantly influence 

the success for designing biologically inspired connected advanced driver assistance 

systems (BICADAS). The primary contributions of this dissertation are:  
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1. A biologically inspired connected vehicle model validated through 

simulations that combines the human engineered system and biological 

solutions. 

2. The first study the effectiveness of ADAS in FSLDPTs. 

3. A dissemination of which ADAS technologies were effective at reducing 

accidents and reducing the severity of injuries contrasted to those which exist 

for driver convenience. 

4. An insight into the economics of ADAS regarding costing and pricing. 

A number of secondary contributions to the BICADAS were also formulated during the 

completion of this dissertation. The subsequent chapters detail the range of this work, from 

a literature review through the development of BICADAS and the comparison of 

BICADAS to present ADAS. This work concludes with the proposal of several ideas for 

future work and improvements to be advanced in this field. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 The Progression of Vehicle Safety Development 

 The automotive industry has a long history of implementing safety features in 

automobiles going as far back as the 1880s with the introduction of headlamps. Since then, 

automotive safety advancements have been a gradual over the nearly 150 years. The 

timeline of the development of safety features is depicted in Figure 1 which is based on the 

timelines for safety technology by the Boston Consulting Group (Mosquet, Andersen et al. 

2015, Mosquet, Andersen et al. 2016).  

 While most of the technologies in Figure 1 were developed to improve the safety 

of the vehicle occupants, not all of these technologies actually improve safety. A good 

 

Figure 1. Timeline of safety feature development. 
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number of them, are better understood as features that provide a convenience to the driver 

by increasing comfort and efficiency (Lin, Ji et al. 2018). Features that do improve safety 

can be divided into two interlaced groups: 

• Those likely to prevent serious accidents, where the possibility of occupant injury 

or death is high, and  

• Those likely to prevent cosmetic damage to the vehicle.  

 The turn of the 21st century is viewed as the advent of intelligent vehicles with the 

2010s giving rise to low level autonomy. At the beginning of the 2000s the WHO published 

their concern that automotive fatalities worldwide could rise by 65% from 1.2M in 2004 to 

2M by the year 2020 (Kopits , Murray, Lopez et al. 1996). Around this time ADAS was 

introduced to the consumer automotive market. While causation is difficult to prove the 

increase in fatalities by 2020 only reached 1.35M a 12.5% increase in fatalities. When 

broken down further between high-income versus low-income countries, the increase in 

fatalities is driven predominately by low-income countries. ADAS equipped vehicles cost 

more than their non-ADAS counterparts, and it is permissible that the lesser increase in 

fatalities for high-income countries than low-income countries can in some part be 

accredited to ADAS. Of course, there are other factors which play a sizable role in the 

disparity between surviving a car accident in a high-income country as opposed to a low-
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income country – healthcare, traffic laws, and accessibility to accident location to name a 

few.  

 Vehicle autonomy has six levels from 0-5 for which the level of control ADAS has 

over the driving of the vehicle creates the stratification. Level 0 has no automation and is 

entirely human controlled (KBB 2020, Synopsys 2021). Level 1 automation provides 

warning for impending danger to the human driver and can take action in one direction (i.e. 

speed up/slow down), while level 2 is the automation taking the corrective action for the 

driver in two directions – speed up/slow down/change lanes (KBB 2020, Synopsys 2021). 

Level 3 is where the vehicle using ADAS and GPS under stringent conditions for the road, 

such as physical barriers for segregation, perform driving tasks, but the driver is ready to 

take over control when needed (KBB 2020, Synopsys 2021). Level 4 is when having a 

human driver is unnecessary and the vehicle controls all aspects of driving on all roads, 

and it is only limited in that it requires speed limits and geofencing software for an area 

 
Figure 2. Visualization of ADAS technology (Kukkala, Tunnell et al. 2018). 
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(KBB 2020, Synopsys 2021). Level 5 is full autonomy with no driver with no geographical 

or speed limitations, and it could potentially work off V2X communications with ADAS 

for obstacle avoidance (KBB 2020, Synopsys 2021).  

  ADAS technology has not been stagnant since its introduction in the 2000s. The 

early versions of ADAS have been improved and even transformed. Early ADAS 

technologies played passive roles simply alerting the driver to potential danger. Newer 

Table 1: ADAS features with functions and sensors utilized. 

ADAS Feature Abbreviation Function 

Adaptive Cruise Control ACC 
Cruise control with the added ability to use the FS 
to also maintain a set distance from a leading 
vehicle. 

Adaptive Cruise Control with Stop 
and Go ACCSG ACC that has the added ability to brake as needed 

and start moving again with traffic. 

Adaptive LED Headlamps ALED Based on lighting conditions driving lights adjust 
for light exposure changes. 

Automatic High Beams AHB Detects other vehicles and adjusts between high-
beams and low beams. 

Blind Spot Warning BSW 
Using sensors to detect obstacles next to the 
vehicle and provide the driver with an alert 
warning. 

Forward Collision Warning FCW 
Through the use of FS for detection of objects 
approaching the front of the vehicle and provide 
the driver with an alert warning. 

Forward Collision Warning with 
Brake Support FAEB Using the FS applies brakes should the driver's 

response time not be sufficient to prevent a crash. 

Forward Sensing FS The combined use of radar and cameras on the 
front of the vehicle. 

Hill Descent Control  HDC Using traction control and anti-lock brakes to 
prevent slipping down steep hills. 

Hill Start Assist HSA Maintains brake pressure until the engine produces 
enough torque to move vehicle uphill. 

Lane Departure Warning LDW Using side cameras to determine if the vehicle is 
drifting out of its lane without a turn signal. 

Lane Keeping LK 
Using the LDW system to steer the vehicle back 
into the center of the lane should the driver's 
response time not be sufficient to stay in lane. 

Park Assist PA Using radar and ultra-sonics to detect objects that 
impinge the vehicles parking path. 

Rear Cross-Traffic Alert RCTA Using BSW sensors to detect during backing up to 
alert the driver should another vehicle approach. 

Rear Sensing RS The combined use of radar and cameras on the rear 
of the vehicle. 

Rear View Cameras RVC Rear facing camera which provides the driver with 
a clear view of what is behind the vehicle. 

Surround View Cameras SVC Stitching together of vehicle cameras to create a 
360-degree view of around the vehicle. 
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ADAS technologies took the early warning of older ADAS technologies and added the 

ability for the vehicle to self-correct when the driver’s response was not quick enough 

(Kukkala, Tunnell et al. 2018). For example, older ADAS, lane departure warning, would 

warn the driver if it determined they were drifting out of their lane, while newer ADAS, 

lane keep assist, will first alert the driver and then steer the vehicle back to the center of 

the lane.  

Different auto-manufacturers offer competing packages and bundles each of which 

combine various ADAS technologies. Table 1 list and describes the individual ADAS 

technologies common at the time of this dissertation. It should be noted that for marketing 

purposes different auto-manufacturers will brand their variation of each ADAS technology 

differently. Case in point, Ford has their Blind Spot Information System (BLIS), while 

Toyota has their Blind Spot Monitoring (BSM). Both systems perform the same function, 

which is to alert the driver of an object outside the driver’s visible spaces. Differences 

between the ADAS by automotive brand is discussed in (Fish and Bras 2021). As for year 

over year for each technology there is only minor improvement except when a new 

technology is introduced. Figure 2, which is from the system coverage figure found in 

(Kukkala, Tunnell et al. 2018), maps the regions each of the individual ADAS technologies 

is responsible for monitoring. When discussing ADAS usage, it is important to remember 

that machine intelligence and human intelligence are complementary, and their combined 

usage of machine computing power and human interpretation working in unison determine 

the effectiveness of ADAS (Huang, Chen et al. 2020). 

2.2 Self-Organization for Cohort Movement Found in Biological Systems 
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 Biological inspirations have been used in multiple varying forms of engineering 

(Kar 2016). The thinking is that organisms and systems that occur in nature have spent 

millennia evolving and optimizing to best serve their needs for survival (Kar 2016, Tee 

Qiao Ying 2018). Many prominent algorithms used for optimization have biological roots 

such as neural networks (Cao and Jun 2003, Yu and Cao 2006, Miramontes, Melin et al. 

2020), ant colony (Blum 2005, Dorigo and Blum 2005), and particle swarm (Sun, Feng et 

al. 2004, Das, Abraham et al. 2008, Miramontes, Melin et al. 2020) to reference a few. A 

thorough breakdown of the different biologically inspired algorithms and their applications 

is provided in (Kar 2016). 

 Different animal species travel in aggregates over different spans of distance. Some 

examples of cohort movement are seen in schools of fish, swarms of bees, colonies of ants, 

and flocks of birds. These groups of animals have been studied and compared for how they 

organize movement within the aggregations. Fish and birds in particular have similar 

models, with a few exceptions (Reynolds 1987, Couzin, Krause et al. 2002, Inada and 

Kawachi 2002, Hemelrijk and Hildenbrandt 2012). Organizational structure of these 

cohorts can be influenced by four characteristics: mechanics of locomotion, local 
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interactions, environmental contributions, and perception of surroundings (Hemelrijk and 

Hildenbrandt 2012). The mechanics of locomotion is physics dependent for how movement 

occurs. In the cases of fish and birds, fluid dynamics contributes to the similarity between 

birds and fish. Local interactions pertain to how the individual communicates with the 

nearby individuals in the aggregation. Some theories about how birds decide to turn involve 

voting through the means of turning slightly toward the flock’s interior momentarily, as is 

the case with dunlin (Calidris alpine) (Heppner and Grenander 1990). Environmental 

contributions refer to factors pertaining to weather and homing (e.g. tendency towards 

roosting area) that set the overall goal or direction of movement. Perception of 

surroundings refers to the individual’s observation of those around them. Figure 3 based 

on (Hemelrijk and Hildenbrandt 2012) shows how perception is used for spacing 

influenced by neighbors. Based on perception individuals can self-organize and adjust their 

velocities by either speeding up or slowing down to form better cohesion with the cohort 

(Hemelrijk and Hildenbrandt 2012). Individuals are better equipped to slow down to avoid 

collisions with fellow cohort members rather than speeding up because of the individual’s 

inability to detect members occupying space outside of their peripheral vision referenced 

by Hemelrijk and Hildenbrandt as the dead angle (γ) (Hemelrijk and Hildenbrandt 2012).  

2.3 Biological Communication and Sensing for Navigation 

Communication and Sensory perception in biology are sizable contributors to animal 

navigation especially in the cases of communal animals (i.e., ants, birds, fish, etc.). There 

are many reasons for animals to communicate from food scavenging to predator avoidance 

to migration. A good portion of what is being communicated about is based on sensory 

perception.   
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There are four main means that signals are readily detected – auditory, haptic, 

olfactory, and visually detected (Eftimie, De Vries et al. 2007). Of these four, olfactory – 

the sense of odor – is the least applicable to the application of this research (automotive 

collision mitigation). This is due to odor diffusion  and dissipation makes it hard to analyze 

smells especially for directionality (Bossert and Wilson 1963). While pheromones are used 

by many animals for navigation and communication, it is not the preferred manner to 

communicate navigation as seen in ant navigation (Garnier, Combe et al. 2013).  

Ants will use visual information to orient themselves and navigate (Garnier, Combe 

et al. 2013). Some ant species will use celestial navigation (Wehner and Menzel 1969, 

Menzel, Kirbach et al. 2011) while others will navigate using the canopy of a forest 

(Hölldobler 1980) and others rely on their memory of landmarks on their travels 

(Chameron, Schatz et al. 1998, Menzel, Kirbach et al. 2011). Biological signaling can be 

communicated through color displays which an animal may display such as warning and 

sexual attraction. For personal protection animals will perform aposematism – visual anti-

predator signaling to the predator of a warning that attack will likely precipitate negative 

outcomes for the aggressor (Caro and Allen 2017). This principle could potentially be 

applied to current ADAS equipped vehicles using the sensors in the rear of the vehicle to 

illuminate brake lights when vehicles approaching from the rear get to close for safe 

following, further discussion on this topic found in Chapter 6.  

Visual signal processing does possess limitations. Leuckart’s law states that there is 

a direct relationship between the size of the animal’s eye and how fast they can travel 

(Leuckart 1876). Further investigation has found that the mass of the animal is also 

interrelated to eye size and maximum running speed (Heard-Booth and Kirk 2012). Visual 
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processing can also be misleading to animals. The closer animals are to a surface or the 

faster it moves the greater the rate of optic flow is perceived by the animal (Scholtyssek, 

Dacke et al. 2014). The perceived increase in the optic flow rate causes most animals to 

slowdown such as bees (Scholtyssek, Dacke et al. 2014). Interestingly, fish do not utilize 

optic flow for determining velocity because unlike bees and birds they are able to mitigate 

the effects of acceleration due to their buoyant nature being in water allows them to stop 

with little deceleration (Scholtyssek, Dacke et al. 2014). Still animals such as cod (gadus 

morhua) and herrings (clupea harengus) rely on visual sensing to maintain distance among 

neighbors. For flocks coordinated near instantaneous movement can be accomplished by 

allelomimetic behavior – where each individual reacts in response to their neighbors 

(Fetecau and Guo 2012). It is though this behavior that animals in flocks rely for spacing 

with other animals in the blind zone/ dead angle (Fetecau and Guo 2012). This plays in 

with collision avoidance being dependent on visual ques but for close spacing in some 

animals haptic sensing such as insects using antennae are more heavily relied upon (Baba, 

Tsukada et al. 2010, Chan and Gabbiani 2013, Benaragama and Gray 2014, Romey, Miller 

et al. 2014). The haptic sensing is not applicable to this research as the purpose is to prevent 

collisions among vehicles.  

Unlike haptic sensing acoustic sensing is already being utilized in vehicles for 

vehicle spacing. Social bees and hornets utilize acoustic signals to construct highly 

organized and precise hives using ultrasonic waves to determine spacing of the honeycomb 

structures (Bergman and Ishay 2007). Bats, who rely on echolocation for navigation, are 

able to distinguish other specific bats based on the uniqueness of the individual’s calls 

(Yovel, Melcon et al. 2009). This is interesting to the topic of vehicle connectivity as the 
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acoustic signals utilized among vehicles for sensing could potentially be unique to each of 

the vehicle EPA classes or vehicle body types.  

Communication among individual animals is critical for group cohesion and self-

organization (Eftimie, De Vries et al. 2007). In group social settings, animals must balance 

what is good for them and what is good for the group such as meerkats turning over food 

to the dominate members of the group (West, Griffin et al. 2007). This is not far from the 

bargaining problem first explored by Nash for determining optimal group outcomes for all 

parties involved (Nash 1950). Dolphins, whose whistle is unique much like how each bat’s 

call is unique, are highly social animals that will join in vocally onto shared calls with other 

dolphins (King, Friedman et al. 2018). These shared calls will be used to signal proximity 

to the social group (King, Friedman et al. 2018). Observational and experimental research 

of wild animals has indicated that animal vocalizations do have the potential for specific 

meanings such as the identification of specific predator types or the location of food 

sources (Suzuki, Wheatcroft et al. 2020). Interestingly, few animals are able to have their 

eyes follow another’s gaze or point to an object with domestic canine being a notable 

exception (Byrne 2003). This is why most of the literature regarding visual communication 

pertains to orientation to another object/animal or coloring/patterning for the transmission 

of signals. The lack of specificity in these communication methods leads to interpretation 

errors in the communication (Lee, Ward et al. 2017). In turn the recipient of the signal often 

takes the safest action based on their interpretation of the signal (Lee, Ward et al. 2017). 

Signal interpretation and error mitigation will be an important aspect of any setup for 

connected vehicles, and biology would suggest taking the safest course of action and then 

transitioning to a better course of action should produce the most favorable outcomes. 
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2.4 Swarm Robotics 

Swarm robotics, while it may seem to be relevant to this research on biologically 

inspired connected vehicles, is to simplified and constrained at its current development 

state to be useful for the complexity of vehicle connectivity. The review of swarm robotics 

was conducted using the Web of Science Core Collection. In the aforementioned database 

the term “swarm robotics” was queried. The resulting references were then limited to those 

that had been cited twenty or more times by other peer reviewed journal articles. Many 

authors define swarm robotics as a large group of robots organized in a display of 

collectively intelligent behavior to achieve an objective that would be outside the 

competencies of a solitary robot (Beni 2005, Garnier, Gautrais et al. 2009, Campo, 

Gutiérrez et al. 2010, Arvin, Samsudin et al. 2011, Pini, Brutschy et al. 2011, Barca and 

Sekercioglu 2013, Pimenta, Pereira et al. 2013, Bandala, Dadios et al. 2014, Ducatelle, Di 

Caro et al. 2014, Francesca, Brambilla et al. 2014, Castello, Yamamoto et al. 2016, Duarte, 

Costa et al. 2016, Francesca and Birattari 2016, Kolling, Walker et al. 2016, Scheidler, 

Brutschy et al. 2016, Schranz, Umlauft et al. 2020). The field of swarm robotics lays at the 

intersection of swarm intelligence and mobile robotics (Dorigo, Trianni et al. 2004, Dorigo, 

Tuci et al. 2004, Martinoli, Easton et al. 2004, Mondada, Pettinaro et al. 2004, Seyfried, 

Szymanski et al. 2004, Beni 2005, Dorigo 2005, Sahin 2005, Gross, Bonani et al. 2006, 

Sharkey 2006, Trianni, Nolfi et al. 2006, Mohan and Ponnambalam 2009, Schmickl, 

Thenius et al. 2009, Bonani, Longchamp et al. 2010, Campo, Gutiérrez et al. 2010, Tan 

and Zheng 2013, Bandala, Dadios et al. 2014, Couceiro, Vargas et al. 2014, Duarte, Costa 

et al. 2016). Much of the development of swarm intelligence stems from biological 

inspiration from birds, fish, insects, and other biological systems (Kube and Bonabeau 
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2000, Payton, Estkowski et al. 2003, Payton, Estkowski et al. 2004, Sahin 2005, Balch, 

Dellaert et al. 2006, Correll, Sempo et al. 2006, Schmickl and Crailsheim 2007, Garnier, 

Jost et al. 2008, Schmickl and Crailsheim 2008, Christensen, OGrady et al. 2009, Campo, 

Gutiérrez et al. 2010, Mayet, Roberz et al. 2010, Arvin, Samsudin et al. 2011, Doursat, 

Sayama et al. 2013, Virágh, Vásárhelyi et al. 2014, Kolling, Walker et al. 2016, Oh, 

Ramezan Shirazi et al. 2017, Suárez, Iglesias et al. 2019, Connor, Champion et al. 2021). 

Swarm robotics offer five main advantages: 

• Improved performance by parallelization – having robots preforms multiple 

tasks at once to achieve an end goal (Pinciroli, Trianni et al. 2012, Barca and 

Sekercioglu 2013, Couceiro, Vargas et al. 2014, Castello, Yamamoto et al. 

2016, Senanayake, Senthooran et al. 2016, Suárez, Iglesias et al. 2019), 

• Task enablement – having groups of robots preform separate hierarchical 

tasks to achieve a common goal (Dorigo, Trianni et al. 2004, Seyfried, 

Szymanski et al. 2004, Gazi and Fidan 2006, Sharkey 2006, Soysal and Şahin 

2006, Liu, Winfield et al. 2007, Berman, Halasz et al. 2009, Arvin, Samsudin 

et al. 2011, Pini, Brutschy et al. 2011, Brambilla, Ferrante et al. 2013, 

Pimenta, Pereira et al. 2013, Pini, Brutschy et al. 2013, Bandala, Dadios et al. 

2014, Brutschy, Pini et al. 2014, Ducatelle, Di Caro et al. 2014, Ferrante, 

Turgut et al. 2015, Castello, Yamamoto et al. 2016, Duarte, Costa et al. 2016, 

Scheidler, Brutschy et al. 2016, Castelló Ferrer 2019, Suárez, Iglesias et al. 

2019), 

• Scalability – using larger numbers of robots to as needed to achieve tasks and 

maintaining group cohesion (Martinoli, Easton et al. 2004, Spears, Spears et 
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al. 2004, Sahin 2005, Çelikkanat and Şahin 2010, Liu and Winfield 2010, 

Arvin, Samsudin et al. 2011, Barca and Sekercioglu 2013, Pimenta, Pereira 

et al. 2013, Valentini, Hamann et al. 2014, Bayındır 2016, Duarte, Costa et 

al. 2016, Senanayake, Senthooran et al. 2016, Suárez, Iglesias et al. 2019), 

• Distributed sensing and action – ability to have robots sense in one area while 

another robot acts in a separate area (Dorigo and Şahin 2004, Arvin, 

Samsudin et al. 2011, Barca and Sekercioglu 2013, Brambilla, Ferrante et al. 

2013, Senanayake, Senthooran et al. 2016, Oh, Ramezan Shirazi et al. 2017, 

Suárez, Iglesias et al. 2019), and 

• Fault tolerance – should one robot go offline another is able to act redundantly 

to take the place of the offline robot (Winfield and Nembrini 2006, 

Christensen, OGrady et al. 2009, Nouyan, Gross et al. 2009, Duarte, Costa et 

al. 2016, Oh, Ramezan Shirazi et al. 2017, Suárez, Iglesias et al. 2019). 

Most research into swarm robotics occurs through simulation and then a small 

portion is evaluated using small robots in an enclosed lab environment (Kube and 

Bonabeau 2000, Payton, Estkowski et al. 2003, Dorigo, Trianni et al. 2004, Dorigo, Tuci 

et al. 2004, Lerman, Martinoli et al. 2004, Martinoli, Easton et al. 2004, Mondada, Pettinaro 

et al. 2004, Payton, Estkowski et al. 2004, Seyfried, Szymanski et al. 2004, Spears, Spears 

et al. 2004, Winfield, Harper et al. 2004, Dorigo 2005, Luke, Cioffi-Revilla et al. 2005, 

Pugh, Martinoli et al. 2005, Correll, Sempo et al. 2006, Gazi and Fidan 2006, Gross, Bonani 

et al. 2006, Sharkey 2006, Soysal and Şahin 2006, Trianni, Nolfi et al. 2006, Winfield and 

Nembrini 2006, Cianci, Raemy et al. 2007, Liu, Winfield et al. 2007, Schmickl and 

Crailsheim 2007, Garnier, Jost et al. 2008, Schmickl and Crailsheim 2008, Berman, Halasz 
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et al. 2009, Cannon, Hoburg et al. 2009, Christensen, OGrady et al. 2009, Garnier, Gautrais 

et al. 2009, Gross and Dorigo 2009, Kazadi 2009, Nouyan, Gross et al. 2009, Schmickl, 

Thenius et al. 2009, Trianni and Nolfi 2009, Bonani, Longchamp et al. 2010, Campo, 

Gutiérrez et al. 2010, Çelikkanat and Şahin 2010, Liu and Winfield 2010, Mayet, Roberz 

et al. 2010, Arvin, Samsudin et al. 2011, Montes de Oca, Ferrante et al. 2011, Pini, Brutschy 

et al. 2011, Sperati, Trianni et al. 2011, Trianni and Nolfi 2011, Ferrante, Turgut et al. 

2012, Pinciroli, Trianni et al. 2012, Gomes, Urbano et al. 2013, Marino, Parker et al. 2013, 

Pimenta, Pereira et al. 2013, Pini, Brutschy et al. 2013, Bandala, Dadios et al. 2014, 

Brambilla, Brutschy et al. 2014, Brutschy, Pini et al. 2014, Couceiro, Vargas et al. 2014, 

Ducatelle, Di Caro et al. 2014, Francesca, Brambilla et al. 2014, Krajník, Nitsche et al. 

2014, Valentini, Hamann et al. 2014, Virágh, Vásárhelyi et al. 2014, Ferrante, Turgut et al. 

2015, Valentini, Hamann et al. 2015, Arvin, Turgut et al. 2016, Castello, Yamamoto et al. 

2016, Duarte, Costa et al. 2016, Francesca and Birattari 2016, Scheidler, Brutschy et al. 

2016, Senanayake, Senthooran et al. 2016, Bandyopadhyay, Chung et al. 2017, Oh, 

Ramezan Shirazi et al. 2017, Valentini, Ferrante et al. 2017, Suárez, Iglesias et al. 2019, 

Schranz, Umlauft et al. 2020). A catalog of the most prominent swarm robotics projects 

was developed by (Schranz, Umlauft et al. 2020) and is the basis for Table 2. Connecting 

vehicles on the road is a harder problem than what has been achieved in swarm robotics as 

robotic swarms are on local networks in close proximity where all robots have access to 

location data of all other robots with a fundamentally noiseless operating environment 

(Soysal and Şahin 2006). Connecting real-world automotive vehicles pose several unique 

challenges that swarm robotics has not addressed such as:  

• Highly regulated traffic laws (lanes, signs, lights, etc.), 
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• Interactions with high diversity of vehicles, 

• Interactions with vehicles that may or may not be connected in any manner, and 

• Noisy environment with moving non-vehicle objects (i.e. pedestrians). 

While swarm robotics may on its face appear related and similar to the problem of 

connected vehicles, swarm robotics is not a useful or relevant field for this research based 

on the aforementioned points of divergence. 

Table 2. Detail of swarm robotics projects. 

Project Name Robot Type Application Environment # of 
Robots 

Kilobots UGV Research and Education Terrestrial 1,024 
Jasmine UGV Research and Education Terrestrial 60 

Alice UGV Research and Education Terrestrial 20 
AMiR UGV Research and Education Terrestrial 6 
Colias UGV Research and Education Terrestrial 14 
Mona UGV Research and Education Terrestrial 30 
R-One UGV Research and Education Terrestrial N/A 
Elisa-3 UGV Research and Education Terrestrial 38 

Khepera IV UGV Research and Education Terrestrial 10 
GRITSbot UGV Research and Education Terrestrial 100 

E-Puck UGV Research and Education Terrestrial 16 
Xpuck UGV Research and Education Terrestrial 16 

Thymio II UGV Research and Education Terrestrial 8 
Pheeno UGV Research and Education Terrestrial 4 

Spiderino UGV Research and Education Terrestrial N/A 
I-Swarm UGV Research and Education Terrestrial N/A 
Zooids UGV Research and Education Terrestrial 32 
APIS UGV Research and Education Terrestrial 6 

Wanda UGV Research and Education Terrestrial 11 
Droplet UGV Research and Education Terrestrial N/A 

Swarm-bot UGV Research and Education Terrestrial 35 
Swarmanoid UGV Research and Education Terrestrial N/A 

Termes UGV Research and Education Terrestrial 5 
Symbrion and 

Replicator UGV Research and Education Terrestrial N/A 

PolyBot UGV Research and Education Terrestrial 32 
M-Tran III UGV Research and Education Terrestrial 24 

ATRON UGV Research and Education Terrestrial 7 
CONRO UGV Research and Education Terrestrial 8 
Sambot UGV Research and Education Terrestrial 15 

Molecube UGV Research and Education Terrestrial 8 
SwarmBot 3.0 UGV Agriculture Terrestrial 5 

Xaver UGV Agriculture Terrestrial 10 
GUARDIANS UGV Emergency and Rescue Terrestrial 4 

Ocado, Amazon 
(Kiva), Alibaba UGV Warehouse Terrestrial 1,100 

SWILT UxV Industrial Plant Terrestrial 1,500 
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Project Name Robot Type Application Environment # of 
Robots 

MAV UAV Research and Education Aerial N/A 
Distributed Flight 

Array UAV Research and Education Aerial 9 

Crazyflie 2.1 UAV Research and Education Aerial 49 
FINken-III UAV Research and Education Aerial N/A 
OFFSET UGV, UAV Military Aerial 250 

Perdix UAV Military Aerial 103 
SMAVNET UAV Emergency and Rescue Aerial 19 
SWARMIX UAV Emergency and Rescue Aerial N/A 
CPSwarm UAV Emergency and Rescue Aerial N/A 

SAGA UAV Agriculture Aerial N/A 
Spaxel UAV Entertainment Aerial 100 
Flyfire UAV Entertainment Aerial N/A 

Ehang GhostDrone 
2.0 UAV Entertainment Aerial 1,000 

Intel Shooting Star UAV Entertainment Aerial 500 
Lucie micro drone UAV Entertainment Aerial N/A 

CoCoRo UUV Environmental Monitoring Aquatic 41 
Monsun UUV Environmental Monitoring Aquatic N/A 

CORATAM USV Environmental Monitoring Aquatic 12 
Platypus USV Environmental Monitoring Aquatic 25 

Apium Data Diver USV, UUV Environmental Monitoring Aquatic 50 
subCULTron UUV Environmental Monitoring Aquatic N/A 
Vertex Swarm UUV Environmental Monitoring Aquatic 10 

SWARMs UUV, USV Environmental Monitoring Aquatic 8 
CARCaS USV Military Aquatic 5 

ROBORDER UxV Surveillance Terrestrial, Aerial, Aquatic N/A 
BugWright2 UxV Maintenance Terrestrial, Aerial, Aquatic N/A 

Sentien Robotics UGV, UAV Multiple Terrestrial, Aerial, Aquatic N/A 
Swarmies UGV Space Exploration Outer Space 20 
Marsbee UAV Space Exploration Outer Space 3 
Swarm UAV Space Exploration Outer Space 3 

Cluster II UAV Space Exploration Outer Space 4 

2.5 The Economics of Automotive Industry in Relation to ADAS 

  The US automotive industry in 2019 manufacturing was valued at $643.9B (Maike 

Schlumbohm 2020) while earning a revenue of $1,252.4B (Statista 2020). This accounts 

for 3% and 6% of the Gross Domestic Product of the United States for 2019 which was 

$21,427.7B (Economics 2020, Bank 2021). For perspective, the automotive industry’s 

revenue is comparable to the total GDP of Russia.  
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 The automotive industry is currently making sizable investments ($220B since 

2010) in new technologies across ten clusters, which can be grouped into four main areas 

of research – Electrification, Connectivity and the Internet of Things, Smart Mobility, and 

Autonomy – as shown in Figure 4 (Daniel Holland-Letz 2019). Of the $220B invested 

since 2010 more than $29.9 billion has been invested by companies into ADAS technology 

research with averages each year ranging from $0.6 billion in 2010 to $5.6 billion in 2019 

(Daniel Holland-Letz 2019). The total investment is expected to increase to over $91.8 

 
Figure 4. Mapping of investment activities across 10 automotive clusters (Statista 

2020). 
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billion by 2025 (Markets 2020). A total of 9,100 patents have been filed with most coming 

out of the US, China, and the UK (Daniel Holland-Letz 2019).  

 Economic importance of ADAS is more than just the cost of investment. The cost 

associated with accidents need strong consideration when evaluating the economics of 

ADAS. The level of injury influences the cost associated with accidents. An accident 

resulting in a fatality on average costs $1.7M (National Safety Council 2020). Table 3 

shows a breakout of cost for the varying severities of injuries based on (National Safety 

Council 2020). Finding ways to reduce fatalities is very important and ADAS has potential 

to do so. At the same time, ADAS is becoming more complex and with the added 

complexity comes added upkeep and repair costs. The upfront cost the consumer to have a 

vehicle equipped with ADAS is approximately 5% - 15% the total cost of the vehicle 

(Automotive 2019). The cost to have these systems repaired has ballooned as depicted in 

Table 4. In some cases, the cost for repair of ADAS capable parts has doubled while in 

Table 3. Average Economic Cost by injury severity taken from 2018 (Council 2020). 

Injury Level Cost Injury Level (#) 
Death (K) $1,659,000 4 

Disabling (A) $96,200 3 
Evident (B) $27,800 2 
Possible (C) $22,800 1 

N  i j  b d (O) $12 200 0 

 

Table 4. Cost of vehicle part repairs/replacements based on (Association 2018, 

Preston 2020). Max cost represents ADAS vehicles while min cost is without ADAS. 

Component Max Cost ($) Min Cost ($) 
Front Bumper  4300 1450 
Rear Bumper  4550 1950 
Side Mirror 2750 1250 

Head- & Tail- lights 1750 300 
Windshield 3650 1750 
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more extreme cases increased by over twelve times the cost for a non-ADAS version of 

the part (Association 2018, Preston 2020). 

2.6 Trucks 

 Trucks represent 56% of all registered vehicles in the United States (Administration 

2019) with FSLDPT comprising 18% (Company 2020). With FSLDPTs contributing to a 

significant portion of vehicles in the U.S. this represents an opportunity area that has yet to 

be explored for the effectiveness of ADAS at reducing injury severity. Heavy trucks on the 

other hand, were some of the first vehicles to decades ago to integrate ADAS technology. 

Heavy trucks have been broadly studied for how ADAS has improved their safety. 

2.6.1 Heavy Trucks 

 Heavy trucks represent a wide range of vehicles from service vehicles to buses to 

tractor trailers or freight trucks. They are defined by their Gross Vehicle Weight Rating 

(GVWR) >26,001 lbs. and are labeled as Class 7 and 8 vehicles by the Federal Highway 

Administration (FHWA) and Environmental Protection Agency (EPA) (Federal Highway 

Administration (FHWA) 2012). Commercial trucks represent 13.7% of all registered 

vehicles in the United States (Gaaille 2018, Associations 2020). Commercial freight 

trucking grossed $791.7B in 2019, which accounts for over 11.84B tons of freight or 72.5% 

of all freight in the US (Associations 2020). Combined 184.2B miles were driven in 2018 

(Associations 2020). Heavy trucking literally drives the US economy, and for this reason 

a large amount of research has been invested into heavy trucks.  
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Heavy trucks were some of the first vehicles to integrate ADAS technologies due 

to their commercial uses back in the 1990s (Kunze, Haberstroh et al. 2011). Many ADAS 

technologies were first tested and developed for heavy trucks such as lane keeping (LK) 

(Montiglio, Martini et al. 2006). ADAS has been proposed to have the potential to be more 

effective in heavy trucks than light vehicles under ideal driving conditions (Yue, Abdel-

Aty et al. 2019). They also are now the first vehicles to have connected ADAS in the forms 

of cooperative adaptive cruise control (CACC) (Cafiso and Di Graziano 2012, Müller 

2012). The advantage to platooning, V2V, is financially driven in that it reduces energy 

consumption and emissions and reduces driver fatigue (Tsugawa, Jeschke et al. 2016). 

Fatigue is a leading cause of human error, which the WHO has determined is the leading 

cause of automotive accidents (Peden, Scurfield et al. 2004). Because of the financial 

importance of heavy trucks on economies, they have been studied in depth for accident 

prevention and do not present as rich of an opportunity for new research as FSLDPTs.  

2.6.2 Full-Size Light-Duty Pickup Trucks (FSLDPTs) 
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 The high percentage (18%) of registered FSLDPTs in the US (Administration 2019) 

Table 5: ADAS technology offerings by model from 2015 to 2020, split between 

standard and optional offerings (latter in parentheses). 

 Model Year 
ADAS Feature: 2015 2016 2017 2018 2019 2020 
Adaptive Cruise 
Control (F) (F) (HR, F) TU, (HR, F) TU, (HR, F) 

TU, (HR, NT, GS, 
CS, F) 

Rear View Camera 
CS, TU, (R, 
GS, F) 

CS, TU, (R, 
NT, GS, F) 

CS, TU, (R, 
NT, HR, GS, 
F) A A A 

Blind Spot Monitoring (TU, F) (NT, TU, F) (NT, TU, F) 
(NT, HR, TU, 
F) 

(R, NT, HR, GS, 
CS, TU, F) 

(R, HR, GS, CS, 
TU, F) 

Cross Traffic Alert (TU, F) (NT, TU, F) (NT, F) 
(NT, HR, TU, 
F) 

(R, NT, HR, GS, 
CS, TU, F) 

NT, (HR, R, GS, 
CS, TU, F) 

Forward Sensing 
System 

(R, GS, CS, 
TU, F) 

TU, (R, GS, 
CS, F) 

TU, (R, HR, 
GS, CS, F) 

TU, (R, HR, 
GS, CS, F) 

TU, (R, HR, GS, 
CS, F) 

NT, TU, (R, HR, 
GS, CS, F) 

Lane Departure 
Warning (GS, CS, F) (GS, CS, F) 

(HR, GS, CS, 
F) 

TU, (HR, GS, 
CS, F) 

TU, (R, HR, GS, 
CS, F) 

NT, TU, (R, HR, 
GS, CS, F) 

Forward Collision 
Warning w/Brake 
Support NT, TU, (F) NT, TU, (F) 

NT, TU, (HR, 
GS, F) 

NT, TU, (HR, 
GS, CS, F) 

NT, TU, (R, HR, 
GS, CS, F) 

NT, TU, (R, HR, 
GS, CS, F) 

Reverse Sensing 
System 

(R, CS, TU, 
F) (R, CS, F) (R, CS, F) (R, CS, TU, F) 

(R, GS, CS, TU, 
F) 

NT, (R, GS, CS, 
TU, F) 

Adaptive LED 
Headlamps F F F F, (GS) GS, F, (HR) NT, GS, F, (HR) 

Automatic High Beam (NT, F) 
(R, NT, CS, 
F) 

(R, NT, HR, 
CS, F) 

TU, (R, NT, 
HR, GS, CS, F) 

TU, (R, NT, HR, 
GS, CS, F) 

NT, TU, (R, HR, 
GS, CS, F) 

Active Park Assist 
(R, CS, TU, 
F) 

(R, GS, CS, 
TU, F) 

(R, GS, CS, 
TU, F) 

(R, GS, CS, 
TU, F) 

(R, GS, CS, TU, 
F) (R, GS, CS, TU, F) 

360 Degree Camera (F) (NT, F) (NT, F) (NT, F) (R, NT, GS, F) (R, NT, GS, F) 

Lane Keeping System (F) (GS, CS, F) 
(HR, GS, CS, 
F) 

(HR, GS, CS, 
F) 

(R, HR, GS, CS, 
F) (R, HR, GS, CS, F) 

Adaptive Cruise 
Control 
with Stop and Go     (F) TU, (F) TU, (R, F) NT, TU, (R, F) 

Hill Start Assist R, F, (GS) 
R, NT, F, 
(GS) R, NT, F 

R, NT, GS, F, 
(HR) 

R, NT, GS, F, 
(HR, TU) 

R, NT, GS, F, (HR, 
TU) 

Driver Fatigue Alert     (F) (F) (F) NT, (F) 
Enhanced Active Park 
Assist     (F) (F) (R, F) (R, F) 

Hill Descent Control (GS, F) (NT, GS, F) (R, NT, GS, F) (R, NT, GS, F) 
(R, NT, GS, TU, 
F) (R, NT, GS, TU, F) 

Adaptive Cruise 
Control  
with Stop and Go and 
Lane Centering         (F) (F) 
Evasive Steering Assist         (F) (F) 
Pre-Collision Assist 
with Automatic 
Emergency Braking         (R, GS, CS, F) NT, (R, GS, CS, F) 
Post Collision Braking         (F) (F) 
Reverse Brake Assist         (GS, F) (GS, F) 
Speed Sign 
Recognition           (NT, F) 

Key: CS = Chevy Silverado; NT = Nissan Titan; R = Dodge RAM 1500; GS = GMC Sierra; HR = Honda Ridgeline; TU = Toyota Tundra; 

F = Ford F-150; A = All 
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makes it critical to examine how the integration of ADAS has affected fatalities and injuries 

in accidents these vehicles. Unlike the heavy trucks, which are for commercial use, have 

massive blind spots, and can weigh 3 times as much, FSLDPTs are intended for personal 

use like sedans (Trigell, Rothhämel et al. 2017). FSLDPTs unlike sedans are larger, less 

maneuverable, and they tend to have larger blind spots (ConsumerReports 2014). These 

characteristics make the potential benefit from ADAS even more impactful. FSLDPTs 

have a GVWR of 6,001 to 10,000 lbs. and are categorized as Class 2 vehicles by the FHWA 

and EPA (Federal Highway Administration (FHWA) 2012). In this category are the 

Chevrolet Silverado 1500, Dodge RAM 1500, Ford F-150, GMC Sierra 1500, Honda 

Ridgeline, Nissan Titan, and Toyota Tundra. ADAS has in recent years been incorporated 

into FSLDPTs; originally being reserved as options, they are becoming ever more a 

standard making them a ripe segment of vehicles to use for analysis. A breakdown of 

ADAS in FSLDPTs is given in Table 5. 

2.7 Literature Review Summary 

 With the incredible amount of expenditure automotive manufacturers are investing 

to develop better and safer vehicles ($220B) (Daniel Holland-Letz 2019), they have 

brought the industry as a whole from level 0 autonomy at the start of the 2000s to level 2 

autonomy on the verge of level 3 in just 20 years (KBB 2020). The instrument to continue 

the advancement of vehicle autonomy is CV with V2V communication (KBB 2020). 

Which vehicles are tethered for a local network and what is transferred amongst them will 

be critical for the success of CVs along with acceptance rate. Biologically inspiration for 

how to plan these local networks for CVs provide a unique and optimized strategy for 

connecting vehicles (e.g. spacing of vehicles and what is communicated between vehicles). 
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For developing these models, the vehicle platform will play a major role in the success of 

the model. The FSLDPT offers a unique advantage for model creation as it represents 18% 

of registered vehicles in the US (Administration 2019), and their design imposes larger 

blind spots and greater mass than sedans increasing the lethality during accidents 

(ConsumerReports 2014).  
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CHAPTER 3. EVALUATION OF DRIVING: HOW THE ACT IS 

PERFORMED AND WHAT IS INVOLVED 

With over 240 million registered vehicles in the United States (Fish and Bras 2021), 

most Americans ages 16 and over are fairly acquainted with driving. Even with so many 

Americans driving, the true understanding of the act is likely vague due to misconceptions 

in how their mental models of driving are formed (Fish, Murphy et al. 2019). This chapter 

establishes a common understanding of the feat of driving. Here functional diagrams of 

function trees and functional decompositions along with flow diagrams and other figures 

are employed to construct the common understanding used for this dissertation.  

3.1 General Overview of Driving 

Driving is the act of transferring oneself under the power of one’s own guidance 

from one location to another using a mechanized means of locomotion. The driver first 

selects the destination then the route to the destination. The driver then moves the in the 

vehicle along the route to the destination. A diagram of this process is shown in Figure 5. 

 

Figure 5. Flow diagram for the simplified driving process. 

On the road drivers will interact with other drivers, obstacles, and traffic 

patterns/configurations. These tasks are affected by deprecations in weather and lighting. 

Also, there are other ill-advised deprecations of cognition caused by drug or alcohol 
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intoxication. Sensory awareness is a crucial component to navigating successfully through 

all the responsibilities incumbent on the driver. A number of authors (Amersbach and 

Winner 2017, Amersbach 2020, Philipp, Schuldt et al. 2020) have developed a functional 

decomposition of the automation for driving based on human interpretations of these tasks 

as shown in Figure 6. They follow a modified Plan Do Check Act Cycle which they refer 

to as their Sense-Plan-Act-Paradigm (Philipp, Schuldt et al. 2020). With Figure 6 there is 

a noticeable linear process from information acquisition and comprehension to response 

with vehicle motion.  

 

Figure 6. Functional decomposition of driving systems charted using the Sense-Plan-

Act-Paradigm (Amersbach and Winner 2017, Philipp, Schuldt et al. 2020). 

  

Most sensory information a driver incorporates into their decision for how to 

respond to the conditions of their driving environment comes from their visual inspection 

of what is in front of them with occasional inspection of what is adjacent to them on either 
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side. From the driver’s observation of the environment, they will perform one or more of 

the subsequent actions when appropriate: accelerate, travel at a constant speed, decelerate, 

or change lanes (Zhang, Chan et al. 2011). At times these decisions are intrinsically flawed 

due to a deficiency of information from the observation of the driver. This is one area where 

ADAS sensors compliment the driver by providing increased sensory awareness. 

Intuitively the driver is checking they are maintaining a safe distance from vehicles in front 

of their vehicle. ADAS or ADS can take in much of the same data and using basic 

Newtonian physics maintain minimal spacing as described by Equations 1 and 2 (Nguyen 

and Ho 2016). Equation 1 calculates the safest minimal distance between two consecutive 

longitudinal vehicles, while Equation 2 calculates the minimal safe distance between 

transverse vehicles. ADS provides additional benefit as it dissimilar to human drivers and 

does not feel the need to decrease speed in narrow lanes (Pinjari, Augustin et al. 2013). The 

reason for this is likely the human driver is judging the rate of speed by optic flow similar 

to birds, fish, and insects (Scholtyssek, Dacke et al. 2014, Crall, Ravi et al. 2015). Here a 

narrow lane means in the mind of the driver that the objects in the periphery are moving 

apparently faster and in response the human driver slows down because of this feedback. 

Thus, human sensory information is not always reliable because of how humans acquire 

and process the information, and this bolsters the importance for determining which signals 

are most reliable to animals that could improve ADS. 
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𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙∗𝜐𝜐
𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝛿𝛿    (1) 

𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑤𝑤∗𝜐𝜐
𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

+ Δ     (2) 

• Length of the vehicle denoted by Ɩ. 

• Width of the vehicle denoted by w. 

• Current traveling speed denoted by υ. 

• Speed limit denoted by υmax. 

• δ: Minimum distance between two stopped in lines longitudinal vehicles   

• Δ: Minimum distance between two stopped transverse vehicles  

Two aspects of interest as it relates to driving for the purposes of this dissertation are how 

a crash is avoided and what leads to the occurrence of a crash. These aspects of driving 

safety are decomposed in the subsequent parts of this chapter. 

3.2 Crash Avoidance 

Traffic pattern organization is stated to be a NP hard problem due to the various 

rules, laws, and volume of vehicles involved with driving (Khan, Aadil et al. 2018). 

Avoiding a crash is a significant aspect of a successful trip. Many authors have created 

simulations, experimented, and written papers about why their research/technology 

improves safety or reduces automotive crashes. Few functionally decompose their 

research/technology to the essences for how it integrates with the vehicle and driver 

(Amersbach and Winner 2017, Amersbach 2020, Philipp, Schuldt et al. 2020). Unlike 

Figurers 5 and 6, which are generic and topical, (Amersbach 2020) functionally 
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decomposed Adaptive Cruise Control (ACC) in detail as shown by the function tree in 

Figure 7. 

 

Figure 7. Adaptive cruise control function tree (Amersbach 2020). 

Figure 7 is a useful functional decomposition for a specific ADAS technology, but 

there is a gap for the overarching functional decomposition for how ADAS works. Figure 

8 accomplishes the overlooked task of an overarching functional decomposition for how 

ADAS works by use of a function tree. It functionally decomposes how ADAS detects 

objects and features in the environment and directs the vehicle to avoid crashes.  
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Figure 8. Function Tree of ADAS. 

An example of one way the function tree of Figure 8 and the flow diagram of Figure 

5 could potentially be integrated into an actual vehicle is depicted in Figure 9. For this a 

system/driver would be following traffic laws, the vehicle’s GPS, and ADAS to avoid a 

crash and successfully transport to their destination. In Figure 9 the proposed method has 

the ADAS branch of the function tree indirectly influencing the routing branch, for the 

ADAS map of coordinate space is observed by the routing branch. The observation of 
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coordinate space feeds into the predict crash branch. The predict crash branch in turn has 

an underlining logic flow diagram for determining how the vehicle should move away from 

the potential crash as shown in Figure 10. It is here that a possible set up for networking of 

connected vehicles is seen. Figure 10 is a system of systems, breaking the responses to a 

potential crash into 3 strata of interactions: smart to smart, smart to semi-smart, and smart 

to dumb. As it takes decades for older vehicles to phase out of the vehicle fleet it is a reality 

that smart vehicles will likely be on the road with different connectivity levels of vehicles. 

• Smart to Smart – both vehicles are able to send and receive information. 

• Smart to Semi-smart – one of the vehicles is only able to send information but is 

unable to receive information while the other has both means of transition available. 

• Smart to Dumb – one of the vehicles cannot transmit any information at all while 

the other has both means of transition available. 

In the Smart to smart case, a field bargaining problem emerges where an optimal solution 

can be achieved through cooperation of both parties involved (Nash 1950). In the smart to 

semi-smart case the smart vehicle would use the information to take the best action for 

itself. Much like the analogous case of animal flocks where communication is needed 

because animals cannot sense equally as well in all directions. Finally, in the smart to dumb 

situation traditional ADAS would be relied upon for crash prevention. 
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Figure 9. Function tree of one way a system/driver may integrate ADAS. 
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Figure 10. Logic flow diagram for determining how to move to avoid a crash. 
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From the functional decomposition of ADAS as shown in Figure 8, several of the 

elements can be looked at for biological inspiration. First, appropriate questions should be 

posed for those elements of interest from a biological perspective. 

• Detect Spacing – Do animals detect there is enough space? 

• Detect Spacing – How do they determine what is enough space? 

• Determine Distance of Nearby Objects – How do they determine the relative 

distance of nearby objects? 

• Identify Objects – How do they identify objects? 

• Identify Objects –What other animals/objects they should pay attention to around 

them? 

• Identify Objects – How do they deal with potential blind spots? 

• Identify Objects – Determining of friend, prey, or predator? 

• Determine Relative Position – How do they orient themselves in space? 

• Determine Relative Velocity – How do they determine how fast another animal is 

moving?  

• Determine Relative Velocity – Is this where they determine a collision will happen? 

Likewise, when planning out how to connect the vehicles for passing information 

to assist ADAS in preventing accidents, as proposed in this dissertation, a functional 

decomposition should be developed to inspect elements and ask similar questions of it for 

how biology performs these tasks. Figure 11 shows just such a function tree for connecting 

ADAS between vehicles. 
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Figure 11. Function tree for connected ADAS. 

Here in Figure 11 different levels of the function tree pose biological questions. 

• Communicate 1-1 vs Among Vehicles - How is it decided if to communicate 1-1 

or to a group? 

• Communicate Visually/Audibly/Haptically/Aromatically – How does biology do 

these tasks? 

• Communicate Visually/Audibly/Haptically/Aromatically – When do they choose 

to do one vs the other? 
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• Communicate Visually/Audibly/Haptically/Aromatically – Is there a preference for 

one type situationally? 

These questions of biology for both the ADAS function tree and the connected ADAS 

function tree, Figures 8 and 11 respectfully, were evaluated and are answered in Chapter 

6. Based on the background of the biology literature review aromatic communication is 

likely not useful for the purposes of this research, but it was an avenue worth examining if 

only to eliminate it as a viable means of communication.  

Avoiding a crash can be treated as a black box with the vehicle, people, energies, and 

signals being input with the vehicle, people, and energy being output as shown in Figure 

12. 

 

Figure 12. Black box for function Avoid Crash. 

From this a traditional engineering design functional decomposition can be composed as 

shown in Figure 13. In Figure 13, there exists a conservation of mater and energy during 

the function of avoid crash.  
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Figure 13. Engineering design functional decomposition for crash avoidance. 
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The function of avoid crash can be also defined to have the vehicle communicate 

with other vehicles through the use of exporting signals as shown by the black box of Figure 

14. There the vehicles communicate through traditional means such as the audio and visual 

signal outputs such as horns and lights, but it also includes the novel output of a network 

signal. Now this work does not prescribe how the network is established be it LTE, 5G, 

Wi-Fi, or another network protocol.  

 

Figure 14. Black box for the function Avoid Crash with output signals. 

As was the case of Figure 13 being associated with Figure 12, Figure 15 is too 

associated with Figure 14. In Figure 15, the engineering design functional decomposition 

of the function avoid crash is shown now including the export of signals so vehicles may 

communicate amongst themselves. The benefit of the systems depicted in Figure 15 over 

Figure 13 is the ability to transmit information to other vehicles. In this Figure 15 is a smart 

vehicle while figure 13 is a semi-smart vehicle.  
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Figure 15. Engineering design functional decomposition for crash avoidance with 

export signals. 
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3.3 Anatomy of a Crash 

Automotive crashes are complex and devastating events with many factors 

influencing the outcome. From the type of vehicles involved to road and weather conditions 

to who is driving all play roles in automotive crashes. Due to its pervasive use, the Ford F-

150 with ADAS was the subject for examining crashes. Between the years 2016 and 2018 

inclusively, in FARS, there were 98 unique F-150 crashes, 26 with a fatality and 72 without 

a fatality for an occupant of the F-150, examined both quantitatively and qualitatively. 

Instances were more than one injury were examined bringing the total of injuries evaluated 

to 138 with 31 fatalities and 107 lesser injuries. The quantitative discussion of these crashes 

is detailed in depth in Chapter 4.  

For the qualitative analysis, GPS coordinates for each crash were search using 

Google Earth for both the satellite view of the road and the ground view images of the road 

and accompanying terrain as shown in Figure 16. The images were examined for 

observable features such as trees fences, straight road, curved road, etc. This was done for 

both groups of injuries for the three year period as shown in Table 6. The values were 

normalized by dividing the totals by the number of injuries for the two groups. A single 

factor ANOVA test was conducted between the normalized values of the two groups for 

 
Figure 16. Example of Google Earth images of a crash location. 
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which no statistical significance was found (P-value = 0.153). Meaning there was not a 

statistical difference in the qualitative observations for a fatal crash injury and a non-fatal 

crash injury. 

Table 6. Qualitative observation of F-150 crashes 2016-2018. Note that fatal and non-

fatal refer specifically to the occupants of that vehicle. 
 

Fatal Total Fatal Normalized Non-Fatal Total Non-Fatal Normalized 

trees 16 0.52 46 0.43 
intersection 4 0.13 32 0.30 

divider 2 0.06 10 0.09 
field 7 0.23 6 0.06 

fence 6 0.19 3 0.03 
pole 5 0.16 25 0.23 

house 4 0.13 2 0.02 
no-shoulder 12 0.39 13 0.12 

corn 3 0.10 0 0.00 
backroad 4 0.13 7 0.07 
two-lanes 16 0.52 9 0.08 

gully 5 0.16 21 0.20 
two-way 16 0.52 19 0.18 
one-way 2 0.06 3 0.03 

rural 3 0.10 2 0.02 
narrow 10 0.32 16 0.15 

shoulder 0 0.00 5 0.05 
wall 0 0.00 6 0.06 

residential 0 0.00 5 0.05 
straight 1 0.03 11 0.10 

curve 1 0.03 8 0.07 
median 1 0.03 12 0.11 

The month, day of the month, time, model year, person number (based on occupant 

total in vehicle during crash), seat position, age, sex, race, height, and license status for the 

driver the injured occupant were tracked. From the tracked occupant information time, seat 

position, and race were the only factors of significance during crashes. Time is 

distinguishable by it being light out or lack thereof light, seat position refers to which seat 
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the occupant is positioned (driver seat, front passenger seat, etc.), and race is the ethnicity 

of the occupant (White, Black, Asian, etc.). For more details about those factors 

contributions on the outcome of a crash see Chapter 4.  

With the observations of accident location and accident details a function tree was 

developed for understanding what leads to an automotive crash as shown in Figure X. It 

can be broken into two branches of what delays reaction time and what causes a poor 

judgement decision. Along the delayed reaction time branch the driver can be described as 

being either distracted or impaired. The impaired driver is a cause of prior poor judgement 

to the act of driving from either alcohol or drug usage. The distracted driver can be caused 

by visual, acoustic, or mental distractions. These can take different forms such as texting, 

noising passengers, day dreaming, etc. Along the other branch of judging a decision poorly 

can be thought of as a misjudgment of distance. That could be caused by not seeing a 

vehicle or not seeing the road. Both would be caused by deteriorated weather, poor lighting, 

or road geometry. 
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Figure 17. Function tree of crash causation.   
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CHAPTER 4. CURRENT FULL-SIZE LIGHT-DUTY PICKUP 

TRUCK PERFORMANCE DURING FATAL ACCIDENTS 

4.1 Methodology for Evaluating the Effectiveness of ADAS in FSLDPTs 

Through a set of distinct processes and procedures, data concerning fatalities of 

FSLDPTs was evaluated to determine the effectiveness of ADAS for each of the seven 

automotive manufacturers. By data mining the NHTSA datasets from the 2016 to 2018 

(period where FSLDPTs with ADAS appear in the datasets), trends and correlations about 

the effectiveness of ADAS technology in FSLDPTs for each brand were established. The 

process from the data collection through the analysis used in this paper is outlined in Figure 

18. Key aspects are explained in the following. 

4.1.1 NHTSA Data 

Searching for non-proprietary data to evaluate the effectiveness of ADAS 

technology led to two possible sources, namely, NHTSA and IIHS. Of these, NHTSA 

provides publicly available data they have collected on fatal accidents dating back to 1975. 

When a fatal accident occurs, NHTSA sends a data collector to collect state driver licensing 

files, vehicle registration files, highway department files, crash reports, and vital statistics 

reports. This data is then used to construct 27 separate files about the accidents (datasets 

prior to 2014 have fewer files). The combination of these 27 files is known as the Fatal 

Analysis Reporting System, or FARS. Every entry in FARS is sanitized for personal 

information prior to public release. This sanitation removes information such as death 

certificate numbers and other personal identifiers and truncates the Vehicle Identification 
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Number (VIN) from 17 characters to 12. Each file in FARS links accidents through case 

numbers. Case numbers begin with the respective U.S State or Territory where the accident 

occurred, which are identifying digits corresponding to the General Service Administration 

(GSA) State/Territory codes.  

Of the 27 separate csv files in FARS, 4 files – Accident, VINDecoded, Vehicle, 

Person – were identified as providing pertinent information pertaining to this study. 

VINDecoded became a FARS file beginning in 2014. For prior years, a function was 

written to take the truncated VINs and generate a file similar to the FARS VINDecoded 

file.  

 

Figure 18. Flow of NHTSA FARS data from collection through evaluation. 

Using the four files, VBA scripts were developed and used to link the files and 

append the data of each accident by linking the case numbers into a new spreadsheet file. 
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These VBA scripts append the data to create a single file in the order of Person, Vehicle, 

VINDecoded, and Accident with only the case identifiers (case number, state number, and 

vehicle number) appearing once per line of data.  

The VBA scripts also query the now linked data to only include data from accidents 

involving FSLDPTs. This query was restricted to only include FSLDPTs that represented 

a manufacturers’ baseline FSLDPT. For example, the RAM 1500 was included while the 

RAM 2500 and up were excluded. This process was repeated for all seven identified 

FSDLPTs (Ford F-150, Chevy Silverado, Nissan Titan, Dodge RAM 1500, GMC Sierra, 

Honda Ridgeline, and the Toyota Tundra). 

4.1.2 ADAS Technology Determination in Vehicles 

The FARS datasets do not distinguish what ADAS technology (if any) was present 

in the vehicles. The truncated VINs restricted the ability to simply look up build charts 

from the manufacturers to determine what ADAS technology was present. Instead, sales 

brochures (Cheverolet 2014, Ford 2014, GMC 2014, LLC 2014, Nissan 2014, Toyota 

2014, Cheverolet 2015, Ford 2015, GMC 2015, LLC 2015, Nissan 2015, Toyota 2015, 

Cheverolet 2016, Ford 2016, GMC 2016, Honda 2016, LLC 2016, Nissan 2016, Toyota 

2016, Cheverolet 2017, Ford 2017, GMC 2017, Honda 2017, LLC 2017, Nissan 2017, 

Toyota 2017, Cheverolet 2018, Ford 2018, GMC 2018, Honda 2018, LLC 2018, Nissan 

2018, Toyota 2018, Cheverolet 2019, Ford 2019, GMC 2019, Honda 2019, LLC 2019, 

Nissan 2019, Toyota 2019) for each FSLDPT from the last five years (2015 – 2020) were 

retrieved and examined. This task was conducted by first doing a word search of the sales 

brochures followed by a full reading of the brochures. This two-stage review was required 
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because some ADAS technologies would appear for a few model years in a row, but then 

skip a model year and reappear in a subsequent model year. The full reading filled in the 

inconsistencies, which were caused by spelling errors, name changes, and brand specific 

branding of technology. 

The brochures were then scrutinized to determine what criteria would stratify 

vehicles based on ADAS availability. This review found that high-end models were likely 

to have more ADAS technology standard or optional while base model FSLDPTs generally 

only possessed a few older or legally required ADAS technologies. This precipitated the 

search for what feature distinguishable from the FARS VINDecoded dataset could be used 

to stratify the vehicle models. Cabin style and engine size were found to be the best way to 

stratify the models, and model year was useful in determining which of the high-end 

models possessed which ADAS technologies.  

High-end and low-end models were able to be identified in the FARS datasets by 

using the information obtained from the auto manufacturer’s sales brochures. The high-

end models were able to be further delineated into those with ADAS and those without 

ADAS. Vehicle trim levels where ADAS was optional were excluded from the analysis. 

This allowed for greater insight into how ADAS affects FSLDPT safety. Low-end models 

did not possess ADAS technology except for those mandated by law. 

4.1.3 Means of Investigation 

The data obtained from FARS was analyzed in several manners. The data was 

initially evaluated to determine how certain factors for a particular year correlated with 

severity of injury to the FSLDPT occupants and level of damage that the FSLDPT 
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sustained. This was then extended to show how these factors’ contribution with respect to 

severity of injuries and level of damage changed over multiple years.  

After stratifying the FSLDPTs as 1) high-end with ADAS, 2) high- end without 

ADAS, and 3) low-end vehicles, the severity of injury was evaluated for each stratum. 

Depending on the severity of the impact on the specified individual vehicle, vehicles 

records could have several occupant injuries attached, but only the most severe vehicle 

injury was counted for each vehicle in this study.  

Vehicle sales data obtained from company 10-K and 20-F reports (mandatory 

comprehensive reports of publicly traded companies for the Security and Exchange 

Commission (SEC)) (Barra and III 2015, Fields and Shanks 2015, Groff and Ballinger 

2015, Kaczynski 2015, Marchionne and Palmer 2015, Moroe and Kubaru 2015, Barra and 

III 2016, Fields and Shanks 2016, Groff and Ballinger 2016, Kaczynski 2016, Marchionne 

and Palmer 2016, Moroe and Kubaru 2016, Barra and III 2017, Groff and Chu 2017, 

Hackett and Shanks 2017, Kaczynski 2017, Marchionne and Palmer 2017, Moroe and 

Kubaru 2017, Barra and Suryadevara 2018, Cullum 2018, Groff and Chu 2018, Hackett 

and Shanks 2018, Manley and Palmer 2018, Moroe and Nakamura 2018) and online web 

searches (2020) were used for normalizations where necessary. 

For both the weather and lighting factors suboptimal/adverse conditions as defined 

by NHTSA’s FARS dataset were combined for separate totals for both respective factors. 

Adverse weather conditions were a combination of eight different attributes – rain, 

sleet/hail, freezing rain/drizzle, snow, blowing snow, fog/smoke/smog, severe crosswinds, 

blowing sand/soil/dirt – as defined by the FARS CRSS Coding and Validation Manual 
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(NHTSA 2018). Degraded lighting conditions were a combination of initially three 

different attributes – dark (not lighted), dark (lighted), dark (unknown lighting) based on 

the FARS CRSS Coding and Validation Manual (NHTSA 2018). This was expanded to 

include two more lighting conditions – dawn, dusk – forming an extended lighting 

condition, which was done to see if more of the different brand FSLDPTs would become 

significant.  

Analysis of Variance (ANOVA) tests were conducted to determine the statistical 

significance of findings. An ANOVA test is a stochastic tool that compares the variances 

of two or more groups of data. The ANOVA test determines if the datasets are in fact the 

same datasets or different distinct sets of data. If there is no real difference between the 

datasets, which is the null hypothesis, the result of the ANOVA P-value (or F-ratio) will 

be near 1. If there is a significant difference between the datasets, the result of the ANOVA 

P-value will be less than 0.05. In this research a one-way ANOVA is used with the 

independent variable used in the test being the Level of Injury. The one-way ANOVA is 

selected over the two-way ANOVA due to the other possible variable for comparison 

(Damage Severity) not being independent of Level of Injury. The total numbers of crash 

involvements, fatalities in the vehicle, and no injuries in the vehicle from 2016 through 

2018 were tallied for two bands of vehicle model years (<2015 and ≥2015). The older band 

of years, while not purposefully being bounded on the minimum year end, did not include 

any model years prior to the 2000 model year. The bands represent the vehicle model years 

prior to ADAS and post ADAS. For most auto manufacturers the ADAS introduction 

vehicle model year is 2015 for FSLDPTs, but Honda introduced ADAS in the 2017 model 

year for FSLDPTs due to a temporary discontinuation of its FSLDPT offerings. A single 
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factor ANOVA test was performed for the high-end vehicle models comparing the bands 

for the high-end vehicle models. High-end vehicle models with and without ADAS were 

selected for the comparison rather than high-end versus low-end as a means to keep as 

many variable factors such as cabin style or engine size constant. It is also important to 

note that accidents were not compared between accident years so as to avoid the potential 

for laws changing between accident occurrences. If there is a statistical difference (P-value 

< 0.05), then the comparison of ADAS to non-ADAS vehicles would indicate there was 

either an improvement or depreciation in the survivability of the FSLDPT. 

4.2 Results for the Full-Size Light-Duty Pickup Truck Sector 

By evaluating several makes and models involved in accidents from 2015 to 2018, 

a portrait of the effectiveness of ADAS technology at reducing the severity of injuries from 

accidents has been developed. The additional observation of how adverse conditions affect 

accidents lead to a determination for how ADAS equipped FSLDPTs are preforming 

relative to their non-ADAS counterparts in less than ideal conditions. The Ford F-150, 

Chevrolet Silverado, GMC Sierra, RAM 1500, Toyota Tundra, Nissan Titan, and Honda 

Ridgeline were the FSLDPTs identified for the comparison in this study. 
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Figure 19. FSLDPT sales data by brand from 2005 to 2018. 

4.2.1 Initial Analysis of Factors of Interest 

From the NHTSA FARS data, ten factors of interest were identified for accidents, 

including: 1) vehicle number for accident involvement, 2) harmful event type, 3) injured 

occupant seat position, 4) injured occupant’s age, 5) injured occupant’s sex, 6) accident 

geographic location, 7) driver’s alcohol consumption, 8) drug use, 9) vehicle impact 

location, and 10) model year. These accidents factors were correlated against the severity 

of injuries in the accident, which ranges on a scale from 0 to 4 with 0 being no injury and 

4 being fatal injury (NHTSA 2018). Three additional values outside the scale, (i.e., 5, 6, 9) 

are used to denote “uncertainty in severity” (5), “unrelated death” (6), or “unknown” (9). 

The ten aforementioned factors were also correlated to the level of vehicle damage ranging 

on a scale of 0 to 6 with 0 being “no damage” and 6 being “disabling damage”. Vehicle 

damage values of 8 and 9 are also used by NHTSA and denote “not reported” and 

“unknown”, respectively. 
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During the initial analysis, it was found that the majority of fatalities and serious 

injuries occurred when the vehicle damage sustained was level 6 - disabling. Several other 

factors behaved as expected, such as most injuries occurring in the primary vehicle in the 

accident and the occupant of the driver’s seat sustaining the most injuries of all types. These 

were expected because only one vehicle is necessary for an accident to occur. Also, if there 

is one occupant of the vehicle then the most common seat position of the vehicle occupant 

is the driver’s seat. The most common harmful event type was collision of vehicles in 

motion. 

Accidents are defined by harmful events. NHTSA identifies 56 different harmful 

events possible for an accident. Of the 56 possible harmful events, four were common to 

FSLDPT accidents – roll over, motor vehicle in transport, pedestrian, and tree – with motor 

vehicle in transport as the most frequent. Motor vehicle in transport means that the accident 

occurred from vehicles driving on the road experiencing a collision.  

4.2.2 ADAS Effectiveness for Different FSLDPTs.  

In the section ADAS Technology Determination in Vehicles, high-end and low-end 

models were able to be stratified using the FARS datasets by using the information 

obtained from the auto manufacturer’s sales brochures. The high-end models were further 

delineated into those that possessed ADAS and those that did not poses ADAS. Low-end 

models in most cases did not possess ADAS technology except when a technology was 

mandated by law. Table 7 delineates the information about the high-end FSLDPTs between 

those with ADAS and those without ADAS for the different injuries sustained during 

accidents in 2018. The RAM 1500 consistently has much lower injury counts across all 
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injury severities for high-end FSLDPTs without ADAS than for its FSLDPTs with ADAS. 

During RAM’s transition to incorporating ADAS in their FSLDPTs the company changed 

ownership from Dodge to Chrysler Fiat. The change in ownership appears in conjunction 

with the large disparity in quantity of injuries. There may be other differences in the vehicle 

between RAM owned by Dodge and RAM owned by Chrysler Fiat that this study does not 

explore. The other vehicle model FSLDPTs did not change owner ship; however, the 

Honda Ridgeline was discontinued in 2015 and brought back with ADAS in 2017. When 

looking at the totals for each FSLDPT, there are considerable differences in sales between 

the seven FSLDPTs. Ford sold nearly a million FSLDPTs in 2018 with Chevrolet and RAM 

having each sold about half as many and GMC about a quarter of the total FSLDPTs sold 

by Ford, respectively. The remaining three FSLDPT models from Honda, Toyota and Ram 

combined sold less than the number of GMC FSLDPTs. Rather than talk about accident 

numbers in Table 7 as normalized by the number of vehicles of each model at 

corresponding vehicle trim level still on the road or sold as to do a comparison between 

automotive manufacturers, whole numbers are provided. The number of the High-end 

models both with and without ADAS involved in fatal accidents are small, but that is a 

factor of there being approximately 40,000 vehicles total involved in fatal accidents for the 

approximately 240 million registered vehicles in the United States. This study is only 

looking at the high-end models of FSLDPTs which make up a small portion of the 

FSLDPTs sold each year further reducing the likelihood for large vehicle numbers. The 

values of vehicles sold by each automotive manufacturer are depicted in Figure 19. 
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Table 7. Table of high-end ADAS and non ADAS injuries in the 2018 FARS data for 

each of the seven FSLDPTs. 

Make & 
Model 

Injury 
Level ADAS High 

w/o Difference (%) Make & 
Model 

Injury 
Level ADAS High 

w/o 
Difference 

(%) 

CHEVY 
Silverado 

0 55 68 19% 

HONDA 
Ridgeline 

0 0 2 100% 

1 24 23 -4% 1 0 3 100% 

2 27 25 -8% 2 1 1 0% 

3 15 27 44% 3 1 1 0% 

4 28 50 44% 4 0 6 100% 

GMC Sierra 

0 15 11 -36% 

NISSAN 
Titan 

0 10 19 47% 

1 6 4 -50% 1 5 3 -67% 

2 12 3 -300% 2 9 5 -80% 

3 1 0 - 3 10 4 -150% 

4 5 1 -400% 4 13 10 -30% 

RAM 1500 

0 186 9 -1967% 

FORD F-
150 

0 40 102 61% 

1 51 3 -1600% 1 12 24 50% 

2 65 3 -2067% 2 17 35 51% 

3 37 3 -1133% 3 3 27 89% 

4 84 3 -2700% 4 13 184 93% 

TOYOTA 
Tundra 

0 1 14 93%      

1 0 5 100%      

2 0 2 100%      

3 2 1 -100%      

4 2 2 0%      

4.2.3 ANOVA Testing of ADAS Effectiveness.  

The FARS database is intended for use in reporting of fatal accidents, but it also 

includes data concerning less severe injuries that occurred during fatal accidents. While 

this does not lessen the severity of the accidents it does provide an interesting insight to 

how well the vehicle preformed at protecting its occupant during such a severe accident. 

The ANOVA test results for all the FSLDPT models are listed in Table 8. Three ANOVA 

tests were conducted for each of the seven FSLDPT models for the different injury 

severities from 2016 to 2018. For reducing fatal injuries, the Ford F150 and Chevrolet 

Silverado were statistically significant. The RAM 1500 was also statistically significant, 
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but as show in Table 7, statistically significance was detrimental rather than advantageous 

with more fatalities occurring in the ADAS equipped vehicles. This trend of the RAM 1500 

being statistically significant in a detrimental manner continued for the other three 

ANOVA tests.  

For reducing all injuries, the Ford F-150, the Chevrolet Silverado, and the Toyota 

Tundra were statistically significant. The all injuries analysis includes the fatal injury and 

the no injury totals. From reviewing the totals, the fatality reduction for Chevrolet and the 

no injury reduction for Toyota is what drove the statistical significance for the all injuries 

analysis for those two FSLDPT models. The Ford F-150 had fewer injuries for all 

individual injury severities.  

For the occurrence of no injuries the Ford F-150 and the Toyota Tundra were 

statistically significant. For the no injury severity totals, both the F-150 and the Tundra had 

fewer instances with ADAS equipped vehicles than with unequipped vehicles. While 

intuitively this seems in opposition to the desired outcome, it in fact is advantageous. The 

all injury analysis, which includes both no injuries and fatal injuries, improved for these 

FSLDPT models, and in the F-150’s case there was improvement with respect to fatal 

injuries. Holistically these results show there were fewer accidents with the ADAS 

equipped FSLDPTs contributing to the lower totals for no injuries. With that said, it is 

important to remember the limitations of this work as described in section 1.5 Assumptions, 

newer vehicles tend to more crashworthy than older vehicles, older vehicles tend to be 

driven by drivers in a more haphazard manner than newer vehicles, and the type of person 

driving an older vehicle tends to be driven by a different demographic of personalities than 

newer vehicles. All of which can affect the propensity to be involved in a crash. 
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Table 8. Table of ANOVA results for comparing FSLDPTs sustained injury levels with 

and without ADAS among the different auto manufacturers’ vehicle models. 

Vehicle Make and Model Injury Level P-Value Significance 

Ford F-150 
No Injury 0.0409 Significant 

All Injuries 0.0029 Significant 
Fatal Injuries 0.0131 Significant 

Chevrolet Silverado 
No Injury 0.3859 Not Significant 

All Injuries 0.0228 Significant 
Fatal Injuries 0.0020 Significant 

GMC Sierra 
No Injury 0.4917 Not Significant 

All Injuries 0.9701 Not Significant 
Fatal Injuries 0.3301 Not Significant 

RAM 1500 
No Injury 0.0118 Significant 

All Injuries 0.0017 Significant 
Fatal Injuries 0.0018 Significant 

Toyota Tundra 
No Injury 0.0044 Significant 

All Injuries 0.0022 Significant 
Fatal Injuries 0.1401 Not Significant 

Honda Ridgeline 
No Injury 0.2857 Not Significant 

All Injuries 0.1521 Not Significant 
Fatal Injuries 0.1194 Not Significant 

Nissan Titan 
No Injury 0.4346 Not Significant 

All Injuries 0.9527 Not Significant 
Fatal Injuries 0.8197 Not Significant 

4.2.4 ADAS Effectiveness in Adverse Driving Conditions for Different FSLDPTs 

As previously stated in ADAS Technology Determination in Vehicles, high-end 

and low-end models were able to be stratified in the FARS datasets using the information 

obtained from the auto manufacturer’s sales brochures. The high-end models were further 

delineated into those that possessed ADAS and those that did not poses ADAS. Low-end 

models in most cases did not possess ADAS technology except when a technology was 

mandated by law, which at present is limited to rear backup cameras. Table 9 delineates 

the information about the high-end FSLDPTs between those with ADAS and those without 

ADAS for the different injury levels sustained during accidents from 2016 to 2018 for the 

five cases of mitigating conditions – weather, drinking, drugs, and lighting.  
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The RAM 1500 consistently has much lower injury counts across all injury 

severities under adverse conditions for high-end RAM 1500s without ADAS than RAM 

1500s with ADAS as shown in Table 7. Even though, the values for the adverse conditions 

are low an ANOVA test is still reasonable because the number of groups being compared 

is two and the sampling points are the five injury levels. If there are more sample points 

than groups, which there are, it is reasonable to perform an ANOVA test. During RAM’s 

transition to incorporating ADAS in their FSLDPTs the company changed ownership from 

Dodge to Chrysler Fiat. The change in ownership appears to account for the large disparity 

in quantity of injuries. There may be differences in vehicle quality between RAM owned 

by Dodge versus RAM owned by Chrysler Fiat which this study cannot take into account. 

One of such changes is the standardizing of placing ADAS in all RAM 1500s regardless 

of trim level, which also drove the total number up. None of the other vehicle models 

changed owner ship, but the Honda Ridgeline was discontinued in 2015 and brought back 

with ADAS in 2017. The discontinuation of the Honda Ridgeline causes their total number 

of accidents across all five adverse conditions. This adds a level of obscurity to whether 

there is real significance for results of the RAM 1500 and Honda Ridgeline.  

When looking at the totals for each FSLDPT, there are considerable differences in 

sales between the seven FSLDPTs. Ford sold nearly a million FSLDPTs in 2018 with 

Chevrolet and RAM having each sold about half as many and GMC sold approximately a 

quarter of the total FSLDPTs as Ford, respectively. The remaining three FSLDPT models 

combined sold below the number of GMC FSLDPTs as shown in Figure 19. When looking 

at Table 9 it is important to not look at the tallies of each level of injury for the adverse 

conditions and think that the fewer injuries represent one FSLDPT being inherently safer 



 72 

than another FSLDPT of a different brand. The FARS database is intended for use in 

reporting of fatal accidents, but it also includes data concerning less severe injuries that 

occurred during fatal accidents. While this does not lessen the severity of the accidents it 

does provide an interesting insight to how well the vehicle preformed at protecting its 

occupant during such a severe accident. A number of studies indicated how ADAS, while 

its’ main purpose is crash avoidance, also acts to reduce injury in cases when crashes occur 

(Eichelberger and McCartt 2014, Fildes, Keall et al. 2015, Christopher Wiacek 2017, 

Cicchino 2017, Cicchino 2018). 

Table 9. Table of high-end ADAS and non ADAS injury totals under adverse conditions 

from 2016 to 2018 FARS data for each of the seven FSLDPTs. 

 Weather Drinking Drugs Lighting Lighting 
Expanded 

Make & Model Injury Level ADAS High 
w/o ADAS High 

w/o ADAS High 
w/o ADAS High 

w/o ADAS High 
w/o 

FORD F-150 
 

0 3 1 2 5 0 2 20 25 20 25 
1 0 0 0 3 0 4 1 4 1 4 
2 3 0 0 3 0 1 9 3 9 3 
3 0 0 1 3 0 0 6 5 6 5 
4 2 2 4 11 1 3 8 13 8 13 

CHEVROLET 
Silverado 

0 19 28 5 12 0 1 49 95 58 104 
1 9 8 3 3 0 2 19 22 20 24 
2 5 11 7 7 2 1 16 30 16 36 
3 4 9 3 14 2 2 10 39 12 40 
4 6 17 13 33 6 13 26 84 27 92 

GMC Sierra 

0 2 1 1 2 0 0 17 11 18 11 
1 1 3 0 0 0 0 1 1 1 1 
2 1 0 1 3 0 0 5 6 8 6 
3 1 1 1 1 2 0 4 1 4 1 
4 1 1 0 0 0 1 5 7 6 7 

RAM 1500 

0 27 2 15 1 5 1 171 10 187 10 
1 24 0 12 0 4 0 46 2 51 2 
2 23 0 12 0 7 0 57 2 61 2 
3 20 0 11 0 2 0 48 2 52 2 
4 31 0 33 0 12 0 101 2 106 2 

TOYOTA Tundra 

0 0 7 0 6 0 0 2 10 2 10 
1 0 1 1 0 0 0 2 5 2 5 
2 0 1 0 1 0 1 0 2 0 2 
3 0 1 0 1 0 1 2 2 2 2 
4 0 4 0 2 0 0 1 5 1 5 

HONDA Ridgeline 

0 1 0 1 0 0 0 0 3 0 4 
1 0 1 0 0 0 0 0 2 0 3 
2 0 2 0 0 0 0 0 1 0 2 
3 0 0 0 0 0 0 1 1 1 1 
4 0 4 0 0 0 2 0 3 0 4 

NISSAN Titan 

0 1 4 0 2 0 1 7 8 7 10 
1 0 2 0 2 0 0 0 3 0 3 
2 2 4 1 1 0 1 5 2 5 3 
3 1 0 1 0 1 0 8 0 8 0 
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4 2 5 0 2 1 1 5 4 6 4 

4.2.5 ANOVA Testing of ADAS Effectiveness During Adverse Conditions 

Five ANOVA tests were conducted for each of the seven FSLDPT models for the 

different mitigating conditions from 2016 to 2018. The ANOVA tests were conducted to 

see if first vehicles with ADAS levels of injuries during adverse conditions can be 

considered as a part of the same or different groups as those FSLDPTs without ADAS, 

which is displayed in Table 10. For this test a desirable outcome is there being a statistical 

difference between groups, which is a P-value <0.05. Then, ANOVA tests were conducted 

to determine if there were differences in the groups of ADAS level of injury when there 

were adverse conditions as opposed to when adverse conditions were not present. This is 

shown in Table 11, where now a desirable outcome is there not being a statistical difference 

between groups, or in P-value results a value >0.05 is desirable. Some of the smaller sample 

sizes may have led to false non-significant results. 

Table 10. Table of ANOVA results for comparing FSLDPTs sustained injury levels with 

and without ADAS among the different auto manufacturers’ FSLDPT models with 

various adverse conditions present. Here statistical significance is desirable, meaning 

that there is a difference between ADAS and non-ADAS performance. 

Vehicle Make and Model Adverse Condition P-Value Significance 

Ford F-150 

Weather 0.240 Not Significant 
Drinking 0.070 Not Significant 

Drugs 0.040 Significant 
Lighting 0.823 Not Significant 

Lighting Extended 0.823 Not Significant 

Chevrolet Silverado 

Weather 0.228 Not Significant 
Drinking 0.204 Not Significant 

Drugs 0.501 Not Significant 
Lighting 0.103 Not Significant 

Lighting Extended 0.110 Not Significant 

GMC Sierra 
Weather 1.000 Not Significant 
Drinking 0.371 Not Significant 
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Drugs 0.667 Not Significant 
Lighting 0.729 Not Significant 

Lighting Extended 0.543 Not Significant 

RAM 1500 

Weather <0.001 Significant 
Drinking 0.004 Significant 

Drugs 0.010 Significant 
Lighting 0.009 Significant 

Lighting Extended 0.010 Significant 

Toyota Tundra 

Weather 0.048 Significant 
Drinking 0.130 Not Significant 

Drugs 0.141 Not Significant 
Lighting 0.055 Not Significant 

Lighting Extended 0.055 Not Significant 

Honda Ridgeline 

Weather 0.160 Not Significant 
Drinking 0.347 Not Significant 

Drugs 0.347 Not Significant 
Lighting 0.006 Significant 

Lighting Extended 0.003 Significant 

Nissan Titan 

Weather 0.100 Not Significant 
Drinking 0.066 Not Significant 

Drugs 0.580 Not Significant 
Lighting 0.427 Not Significant 

Lighting Extended 0.593 Not Significant 

From Table 10 the Ford F-150, RAM 1500, Toyota Tundra, and Honda Ridgeline 

indicate some level of statistical significance meaning there exists a difference between 

their respective FSLDPTs with ADAS and those without ADAS. This is generally desirable 

with the RAM 1500 being an exception for the reasons previously stated about their ADAS 

equipped FSLDPTs having an increase in total accident numbers. Honda had uneven 

comparison because in 2016 their FSLDPTs were still on the road from prior to the 

FSLDPT being discontinued before being reintroduced in 2017. For this reason, the 

significance of Honda should not be viewed as a certainty. With that in mind the Ford F-

150 and Toyota Tundra showed statistical improvement for when the adverse conditions 

of drugs present in the driver’s system and poor weather, respectively. The statistical 

improvement for the Ford F-150 when the driver had drugs in their system indicates that 

the ADAS technology is potentially giving the driver ample time to make corrections or 

the ADAS is driving the vehicle to avoid the danger itself. This is supported by the Ford 



 75 

drinking adverse condition being almost statistically significant as well. The performance 

of ADAS is interesting when looking at the results of Table 11, where the desirable 

outcome is no significance. Even though Ford and Toyota FSLDPTs with ADAS 

performed better than non-ADAS versions during adverse conditions, the ADAS systems 

performed differently between adverse and non-adverse conditions of drug use and 

weather, respectively. What was a major positive outcome from Table 11 was how during 

the adverse condition of lighting extended, meaning it is dark out and the lighting is not 

better than that at dusk or dawn, for all but the Nissan Titan did not affect ADAS 

performance. This is an improvement over the findings of (Cicchino and Zuby 2017, A. 

Sumi 2019, Spicer, Vahabaghaie et al. 2021), which found there to be a deprecation in the 

performance of ADAS during poor lighting conditions. It was also encouraging to see the 

ADAS performance of the Ford F-150 and the Nissan Titan were not affected by adverse 

weather conditions. Poor weather conditions pose issues for ADAS sensors as light and 

audio sensors can be distorted due to refraction and absorption during precipitation. 

4.2.6 Result Synopsis 

With the ever more availability of ADAS technology in FSLDPTs, the increased 

use of ADAS and overall truck design has shown the potential to improve the survivability 

for truck occupants during an accident. There is a need for several FSLDPT manufacturers 

to reassess their ADAS technologies to be on par with those found in Ford’s F-150 and 

Chevrolet’s Silverado as detailed in Table 8 and discussed in the section ANOVA Testing 

of ADAS Effectiveness. At present, according to the results, GMC, Honda, Nissan, and 

RAM FSLDPTs fall behind Toyota, Chevrolet, and especially Ford in their ability to 

prevent accidents and reduce injury severity. Of the 18% of registered vehicles, slightly 
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more than half show improvement in reduction of injuries and fatalities. The lack of 

improvement by GMC, Honda, Nissan, and RAM in any of the injury categories should 

not be classified as a failure of safety features. Rather, the ADAS technology in these 

FSLDPTs are better classified as features of convenience. These convenience features may 

help prevent accidents not encompassed by the FARS data used in this analysis. It is 

interesting that Chevrolet would show improvement while GMC did not. Both companies 

are subsidiaries of General Motors and likely have similar vendors for ADAS sensors. 

When talking about ADAS as a convenience certain ADAS technologies more readily fall 

into that category based on what they are meant to achieve and the type of accident they 

supposed to prevent. These are generally seen as low speed impacts where damage is 

cosmetic. The data used in this study would not reveal how important these ADAS 

technologies of convenience are at preventing damage. The fact that several brands did not 

show statistical improvement from the NHTSA data is potentially concerning as the ADAS 

technologies meant for safety should show their worth from this data, but this may just be 

an effect of sample sizes being small. As mentioned, General Motors owns two of the seven 

brands reviewed in this study and they should behave similarly. GMC actually performed 

worse with ADAS in 2018 than without ADAS that year. This points to an unseen factor 

effecting GMC FSLDPTs such as how they are positioned on the vehicle. With respect to 

the other brands that did not improve, they may be in a similar situation to GMC or their 

ADAS technologies may not be on par with those of that showed improvement. This is 

detailed in greater depth in (Fish and Bras 2021). 

Table 11. Table of ANOVA results for comparing FSLDPTs sustained injury levels with 

ADAS among the different auto manufacturers’ FSLDPT models with various adverse 
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conditions present or absent. Here statistical significance is undesirable, meaning that 

there is no difference between ADAS performance under adverse conditions and 

preferred conditions. 

Vehicle Make and Model Adverse Condition P-Value Significance 

Ford F-150 

Weather 0.389 Not Significant 
Drinking 0.021 Significant 

Drugs 0.018 Significant 
Lighting Extended 0.079 Not Significant 

Chevrolet Silverado 

Weather 0.017 Significant 
Drinking 0.021 Significant 

Drugs 0.012 Significant 
Lighting Extended 0.240 Not Significant 

GMC Sierra 

Weather 0.046 Significant 
Drinking 0.035 Significant 

Drugs 0.039 Significant 
Lighting Extended 0.762 Not Significant 

RAM 1500 

Weather 0.014 Significant 
Drinking 0.009 Significant 

Drugs 0.005 Significant 
Lighting Extended 0.583 Not Significant 

Toyota Tundra 

Weather <0.001 Significant 
Drinking 0.002 Significant 

Drugs <0.001 Significant 
Lighting Extended 1.000 Not Significant 

Honda Ridgeline 

Weather 0.242 Not Significant 
Drinking 0.195 Not Significant 

Drugs 0.065 Not Significant 
Lighting Extended 0.681 Not Significant 

Nissan Titan 

Weather 0.132 Not Significant 
Drinking <0.001 Significant 

Drugs <0.001 Significant 
Lighting Extended 0.023 Significant 

Only two FSLDPTs, the Ford F-150 and the Toyota Tundra, clearly demonstrated 

improvement in injury level reduction in ADAS equipped FSLDPTs over FSLDPTs 

without ADAS for the adverse conditions drug use and poor weather, respectively. A third 

FSLDPT, the Honda Ridgeline, potentially showed improvement of ADAS over non-

ADAS for injury level reduction during an adverse condition of poor lighting, but due to 

the discontinuation and reintroduction of the Honda Ridgeline skepticism of the 

significance exists. A positive sign was how all FSLDPTs with ADAS had at least one 
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adverse condition where the ADAS statistically performed the same regardless of the 

presence or absence of the adverse condition. The most common being the same 

performance during poor lighting conditions. The Nissan Titan was an exception, but it 

performed the same during poor weather conditions. The Ford F-150 and Honda Ridgeline 

also performed the same regardless of the presence or absence of poor weather conditions 

in addition to the lighting conditions. These consistent performances of ADAS equipped 

FSLDPTs regardless of the presence or absence of adverse conditions is an improvement 

that had been anticipated, but not previously proven by (A. Sumi 2019). This indicates that 

the ADAS sensors are refined enough to compensate for environmental adverse conditions. 

This does not mean that these ADAS packages are perfect and these are the best results 

ADAS can achieve. It simply means that the combination of sensors and technologies used 

for these vehicles compensate for deficiencies of any individual ADAS sensor/technology. 

4.3 A Look at the Industry Leader (Ford F-150) 

4.3.1 Means of Investigation 

The data obtained from FARS was analyzed in several manners. The data was 

initially evaluated to determine how certain factors for a particular year correlated with 

severity of injury to the FSLDPT occupants and level of damage that the FSLDPT 

sustained. This was then extended to show how these factors’ contribution with respect to 

severity of injuries and level of damage changed over multiple years.  

After stratifying the FSLDPTs as 1) high-end with ADAS, 2) high- end without 

ADAS, and 3) low-end vehicles, the severity of injury was evaluated for each stratum. 

Depending on the severity of the accident, vehicles records could have several occupant 
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injuries attached, but only the most severe vehicle injury was counted for each vehicle in 

this study. Table 12 delineates the information about the high-end and low-end vehicles 

found in 2018. The percentage of the 1,043 accidents involving F-150s that had ADAS 

represents 2.3% to 2.6% of the accidents. The range is dependent on the inclusion or 

exclusion of F-150 XLT trims which may or may not have ADAS depending on their 

option package. To ensure a clear ADAS vs non-ADAS comparison, vehicles like the 

XLTs were excluded if it was not clear whether they a) belonged to the low-end and truly 

were without ADAS or b) were mid-level vehicles with options for ADAS, but it could not 

be discerned if ADAS was present or not. In total, 193 vehicles were excluded from the 

1,034 vehicle accidents because of ambiguity in ADAS presence (see Table 12). 

Vehicle sales data obtained from company 10-K reports (mandatory comprehensive 

reports  of publicly traded companies for the Security and Exchange Commission (SEC)) 

(Fields and Shanks 2015, Fields and Shanks 2016, Hackett and Shanks 2017, Hackett and 

Shanks 2018) and online web searches (2020) were used for normalizations where 

necessary. 

ANOVA tests were conducted to determine the statistical significance of findings. 

The total numbers of accidents, fatalities, and no injuries from 2016 through 2018 were 

tallied for three bands of vehicle model years (<2009, 2009-2014, and ≥2015). The three 

bands represent three generations for Ford F-150s. The prior to 2009 band (<2009) 

represents a vehicle model before a major vehicle redesign. The 2009 to 2014 was the band 

of the new vehicle design before ADAS was introduced to the vehicles. The 2015 and later 

high-end vehicle models have the same new vehicle design with the addition of ADAS.  

A single factor ANOVA test was performed for the high-end vehicle models 
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comparing the three bands of model years (<2009, 2009-2014, >2014) in four ways (see 

also 11): 1) the first two bands, 2) the latter two bands, 3) the first two bands combined 

verses the final band, and 4) all three bands. These ANOVA tests showed how the new 

vehicle model design without ADAS compared to the older vehicle model design without 

ADAS (per comparison 1); how ADAS compared to non-ADAS for the same vehicle 

model design (per comparison 2); how ADAS compared to non-ADAS regardless of 

vehicle model design (per comparison 3), and how ADAS compared to non-ADAS 

accounting of vehicle model design (per comparison 4).  

Table 12. Table of high-end and low-end accidents in the 2018 FARS data, and the 

adjusted percentages for normalizing vehicles sold. The total population of F-150s 

involved in accidents in 2018 was 1,043 per FARS data of which 850 were used for ADAS 

fatality comparison. 

 High-end vehicles Low-end vehicles 
Vehicles in accidents 
(Total = 1,043 of which 
850 were included in 
the study) 

384 36.8% of accidents  466 44.7% of accidents  

Vehicles having a 
fatality (Accidents = 
383) 

127 12.2% of accidents 
33.1% of High-
end Vehicle 
Accidents 

256 24.5% of accidents 
54.9% of Low-
end Vehicle 
Accidents 

Vehicles having a 
fatality with ADAS 
features standard 
(High-end 2015+) 

25 2.4% of accidents 6.5% of High-end 
Vehicle Accidents N/A N/A N/A 

It is expected that vehicles with ADAS will be statistically different than those 

without ADAS. The different vehicle model designs could contribute to a statistical 

difference between vehicles with and without ADAS. Thus, the new vehicle model design 

without ADAS is compared to the old vehicle model design without ADAS. If there is a 

statistical difference (P-value < 0.05), then the comparison of ADAS to non-ADAS 

vehicles would need to be limited to only the new vehicle model design. If there is not a 

statistical difference, it is permissible to compare ADAS to all non-ADAS regardless of 
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vehicle model design. No or weak statistical difference in vehicle model design is also 

possible, in which case, ADAS can be compared to all non-ADAS vehicles regardless of 

vehicle model design. 

4.3.2 Results of Studying the Industry Leader 

By evaluating several makes and models involved in accidents from 2015 to 2018, a 

portrait of the effectiveness of ADAS technology at reducing the severity of injuries from 

accidents has been developed. Here the Ford F-150 is specifically used as it represents on 

average, the most widely registered FSLDPT in the US (Miller 2019).  

4.3.2.1 Initial Analysis of Factors of Interest 

From the NHTSA FARS data, ten factors of interest were identified for accidents, 

including: 1) vehicle number for accident involvement, 2) harmful event type, 3) injured 

occupant seat position, 4) injured occupant’s age, 5) injured occupant’s sex, 6) accident 

geographic location, 7) driver’s alcohol consumption, 8) drug use, 9) vehicle impact 

location, and 10) model year. These accidents factors were correlated against the severity 

of injuries in the accident, which ranges on a scale from 0 to 4 with 0 being no injury and 

4 being fatal injury (NHTSA 2018). The FARS database is intended for use in reporting of 

fatal accidents, but it also includes data concerning less severe injuries that occurred during 

fatal accidents. While this does not lessen the severity of the accidents it does provide an 

interesting insight to how well the vehicle preformed at protecting its occupant during such 

a severe accident. Three additional values outside the scale, (i.e., 5, 6, 9) are used to denote 

“uncertainty in severity” (5), “unrelated death” (6), or “unknown” (9). The ten 

aforementioned factors were also correlated to the level of vehicle damage ranging on a 
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scale of 0 to 6 with 0 being “no damage” and 6 being “disabling damage”. Vehicle damage 

values of 8 and 9 are also used by NHTSA and denote “not reported” and “unknown”, 

respectively. 

During the initial analysis, it was found that the majority of fatalities and serious 

injuries occurred when the vehicle damage sustained was level 6 - disabling. Several other 

factors behaved as expected, such as most injuries occurring in the primary vehicle in the 

accident and the occupant of the driver’s seat sustaining the most injuries of all types. These 

were expected because only one vehicle is necessary for an accident to occur. Also, if there 

is one occupant of the vehicle then the most common seat position of the vehicle occupant 

is the driver’s seat. The most common harmful event type was collision of vehicles in 

motion. 

4.3.2.2 Injury Severity for Bands of Model Year 

Accidents are defined by harmful events. NHTSA identifies 56 different harmful 

events possible for an accident. Of the 56 possible harmful events, four were common to 

FSLDPT accidents – roll over, motor vehicle in transport, pedestrian, and tree – with motor 

vehicle in transport as the most frequent. Motor vehicle in transport means that the accident 

occurred from vehicles driving on the road experiencing a collision with another vehicle.  
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Figure 20. Relation between harmful events and injury severity normalized over sales 

and distributed over three bands of model years: older than 2009, 2009 to 2014, and 

newer than 2014. 

 

Figure 20 illustrates a shift of severity of injury for three time periods of F-150 

models where the majority of injuries moves from fatal injuries in vehicles older than 2009 

to minor injury in 2009-2014 vehicles to no injury in vehicles newer than 2014. Newer 

models experienced a greater percentage of their total accident injuries as low severity 

injuries (no injury, possible injury, and minor injury), when normalized for total accidents, 

than older models during accidents involving a fatality. Figure 20 indicates that ADAS is 

improving the safety of occupants during accidents and reducing the occurrence of 

accidents. The adoption of ADAS should be disseminated to all FSLDPT model levels. 

4.3.2.3 ANOVA Results for Testing of ADAS Effectiveness 

The ANOVA test between fatalities occurring in high-end and low-end models 

found a weak statistical significance, P-value 0.063, for models newer than 2014. This 
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matched with an ANOVA test between accidents occurring in high-end and low-end 

models, P-value 0.06. There was also statistical significance between non-ADAS and 

ADAS for fatalities. Statistical significance was found for accidents with no injuries 

between non-ADAS and ADAS equipped FSLDPTs. As ADAS technology improves and 

becomes more standardized the safety of the FSLDPT occupants improves. 

As shown in Table 13, there was weak statistical significance for high-end vehicle 

models when comparing the 2009-2014 and the >2014 band. A weak statistical significance 

was also found for the <2009 and 2009-2014 bands. There was little to no change in 

significance for injuries of occupants between the old vehicle model design (<2009) and 

the new vehicle model design prior to ADAS (2009 – 2014). There was a weak change in 

significance between the new vehicle model design pre (2009 – 2014) and post ADAS 

(>2014); however, when comparing ADAS (>2014) to all non-ADAS (≤2014) there was a 

significant change for injuries of occupants. When comparing the three vehicle model year 

bands there was only a significant change for fatal injuries. 

Taking these results together indicates that ADAS has made a significant change in 

reducing the severity of injuries of FSLDPT occupants. This finding is reinforced by 

plotting the 2018 severity of injuries of the different F-150 models, as shown in Figure 21. 

As shown in Figure 21, high-end F-150s with ADAS have roughly 4 times fewer fatalities 

than high-end FSLDPTs without ADAS and 10 times fewer fatalities than low-end 

FSLDPTs. 
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Figure 21. Severity of injuries by high-end (High), high-end with ADAS (ADAS), high-

end without ADAS, and low-end (Low) FSLDPTs for 2018. 

4.3.2.4 ANOVA and ANCOVA Analysis of Factors Affecting Industry Leader ADAS 

When vehicles with ADAS were in accidents, further ANOVAs were conducted to 

determine what factors affected the level of injury in FSLDPTs with ADAS. Factors that 

were statistically significant were the US State where the accident occurred (P=0.044), the 

type of harmful event (P<0.001), the road being a rural road or an urban road (P<0.001), 

the trafficway’s division (P=0.036), and road surface conditions (P=0.004). Interestingly, 

age or sex were not statistically significant even with approximately three out of four 

drivers being male. This is important as age and gender are both used for calculating 

insurance premiums. Since neither affects ADAS performance, insurance companies 

should remove those factors for calculating premiums when the FSLDPT has ADAS. With 

that said insurance premiums are regulated at the state level and is associated with risk 



 86 

tendencies irregardless of what vehicle is being driven. 

Table 13. ANOVA results for comparison of model year bands (<2009, 2009-2014, 

>2014) for high-end vehicles 

Accident 
Injury 

Vehicle Model Year Bands Being 
Compared 

P-value Significance 

Fatal 
Injury 

<2009 & 2009-2014 vs >2014 0.0131 Significant 
2009-2014 vs >2014 0.137 Very Weak 

Significance 
<2009 vs 2009-2014 0.0907 Weak Significance 

<2009 vs 2009-2014 vs >2014 0.0168 Significant 

All 
Injury 
Types 

<2009 & 2009-2014 vs >2014 0.0029 Strong Significance 
2009-2014 vs >2014 0.108 Very Weak 

Significance 
<2009 vs 2009-2014 0.9247 Not Significant 

<2009 vs 2009-2014 vs >2014 0.0874 Weak Significance 

No 
Injury 

<2009 & 2009-2014 vs >2014 0.0409 Significant 
2009-2014 vs >2014 0.0961 Weak Significance 
<2009 vs 2009-2014 0.7226 Not Significant 

<2009 vs 2009-2014 vs >2014 0.1252 Very Weak 
Significance 

 

Rural versus urban fatal accidents for FSLDPTs ratio is approximately 2:1 for 

ADAS equipped and non-ADAS FSLDPTs which is consistent with the IIHS press release 

on the matter (Institute 2019). The state factor seemed to be describable with the rural or 

urban road factor matching a NHTSA fact sheet (NHTSA 2019). It was found from 

ANCOVA testing that the function of the trafficway, vehicle travel speed, road curvature, 

number of lanes, road profile, pavement type, and excessiveness of speed were not 

statistically significant when used as a covariable with the rural or urban factor. A summary 

of the ANCOVA testing is depicted in Table 14.  
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Table 14. Statistical significance for ANOVA of rural vs urban and ANCOVA for other 

factors (underlined values are significant). 

Factors Rural/ Urban 

ANOVA 0.0003 

C
ov

ar
ia

nt
 fo

r 
A

N
C

O
V

A
 

Route 0.6092 

Function System 0.3614 

Travel Speed 0.7987 

Speed Limit 0.0299 

Number of Lanes 0.1537 

Traffic Way 0.4573 

Road Profile 0.5544 

Pavement Type 0.2315 

Surface Conditions 0.9896 

Speed limit used as a covariable with rural or urban was statistically significant 

from ANCOVA testing with a P-value of 0.030 when unknowns and non-trafficways were 

excluded. This is intriguing because the factors involving the FSLDPTs’ speed from 

ANOVA and ANCOVA testing were not statistically significant. The FARS data does not 

include the traffic density on the road during the accident. Traffic density is accounted for 

when planning roadway speed limits, since the higher speed limits of rural roads indicate 

a lower traffic density than city roads. All the other cofactors for the development of the 

speed limit were directly able to be analyzed with the ANCOVA test, and they were found 

not to contribute. This finding indicates that the planned traffic densities for rural roads 

were underestimated or the traffic density for rural roads was much lower when the speed 

limits were set than present day. ADAS software could be written to account for this and 

alter ADAS criteria and actions if GPS data was incorporated into the ADAS decision 

scheme. 
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4.3.3 Result Synopsis for the Industry Leader 

The growing availability of ADAS technology, its increased use in FSLDPTs, and 

the overall truck design have improved the survivability of truck occupants during an 

accident. The decrease in the overall number of accidents (shown in Tables 12 and 13) and 

the shift from higher severity injuries to lower severity injuries (detailed in Figures 20 and 

21) demonstrates the effectiveness of ADAS at reducing fatalities. Most hazardous events 

are vehicles in motion colliding with each other. ANCOVA testing determined that the 

speed limit coupled with the road being rural or urban affected the injury level of ADAS 

equipped vehicles. Thus, ADAS could be further improved by incorporating GPS data for 

determining when to alert or take action. The road being rural or urban appears to be a 

significant factor in ADAS performance. 

4.4 Investigating Economics of the Seven FSLDPT High-End Models 

The FARS data from NHTSA was analyzed in several stages. The data was initially 

evaluated to determine how certain factors for a particular year correlated with severity of 

injury to the FSLDPT occupants and level of damage that the FSLDPT sustained. This was 

then extended to show how these factors’ contribution with respect to severity of injuries 

and level of damage changed over multiple years. After stratifying the FSLDPTs as 1) 

high-end with ADAS, 2) high-end without ADAS, 3) low-end, the severity of injury was 

evaluated for each stratum. Vehicle sales data, obtained from company 10-K reports, a 

mandatory comprehensive report of publicly traded companies for the Security and 

Exchange Commission (SEC)(Fields and Shanks 2015, 2016, Groff and Ballinger 2015, 

2016, Barra and III 2015, 2016, 2017, Kaczynski 2015, 2016, 2017, Marchionne and 
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Palmer 2015, 2016, 2017, Moroe and Kubaru 2015, 2016, 2017, Groff and Chu 2017, 2018, 

Hackett and Shanks 2017, 2018, Barra and Suryadevara 2018, Cullum 2018, Manley and 

Palmer 2018, Moroe and Nakamura 2018), and online web searches (2020), were used for 

normalization. The normalization was performed by copying the data previously evaluated 

and dividing it by the number of FSLDPTs of the corresponding model were sold each 

year.  

ANOVA tests were conducted to determine the statistical significance of findings. 

The ANOVA test (analysis of variance test) is a stochastic tool that compares the variances 

of two or more groups of data. The ANOVA test determines if the datasets are in fact the 

same datasets or different distinct sets of data. If there is no real difference between the 

datasets, the null hypothesis, the result of the ANOVA P-value (or F-ratio) will be near 1, 

and if there is a significant difference between the datasets, the result of the ANOVA P-

value will be less than 0.05. In this research a one-way ANOVA is used with the 

independent variable used in the test is the Level of Injury. The one-way ANOVA is 

selected over the two-way ANOVA due to the other possible variable for comparison 

(Damage Severity) not being independent of Level of Injury. The total numbers of 

accidents, fatalities, and no injuries from 2016 through 2018 were tallied for two bands of 

vehicle model years (<2015 and ≥2015). These two bands represent the vehicle model 

years prior to ADAS and post ADAS. For most auto manufacturers the ADAS introduction 

vehicle model year is 2015 for FSLDPTs, but Honda introduced ADAS in there 2017 

model year for FSLDPTs due to a temporary discontinuous of their FSLDPT. A single 

factor ANOVA test was performed for the high-end vehicle models comparing the bands 

for the high-end vehicle models. High-end vehicle models with and without ADAS were 



 90 

selected for the comparison rather than high-end versus low-end as a means to keep as 

many factors constant such as cabin style or engine size. It is also important to note that 

accidents were not compared between accident years so as to avoid the potential for laws 

changing between accident occurrences. If there is a statistical difference (P-value < 0.05), 

then the comparison of ADAS to non-ADAS vehicles would indicate there was either an 

improvement or depreciation in the survivability of the FSLDPT.  

4.4.1 ADAS Technology Costs 

The SBD USA ADAS & Autonomy database (Automotive 2019), details the 

ADAS technologies in over 500 models including who produces the technologies for the 

vehicles, list the cost of ADAS technologies. It also states who the suppliers are for each 

technology, for example both GMC and Chevrolet use ZF for their respective lane 

departure prevention systems. There are some shortcomings from the database as not all 

technologies are listed; however, this is consistent across all brands. The consistency means 

that even if a technology, is missing it is missing across the board allowing the comparison 

to still be valid. The database did not provide any data regarding the Honda Ridgeline. 

Even so, the Honda Ridgeline represents a very small segment of the vehicle population. 

By comparing cost for the ADAS technologies across brands for FSLDPTs a determination 

can be made about which suppliers produce an effective safety product and at what price 

point. The result of which can be used to determine if there is a threshold cost for the ADAS 

technology packages before desirable outcomes, reduction in fatalities and fatal accidents, 

occur.  

4.5 Economic Outcomes Based on ADAS Effectiveness for FSLDPTs 
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Through evaluation of several makes and models involved in accidents from 2015 

to 2018, a portrait of the cost effectiveness of ADAS technology at reducing the severity 

of injuries from accidents has been developed. The Ford F-150, Chevrolet Silverado, GMC 

Sierra, RAM 1500, Toyota Tundra, Nissan Titan, and Honda Ridgeline were the FSLDPTs 

identified for the comparison in this study. 

4.5.1 ADAS Effectiveness for Different FSLDPT High-End Models With and Without 

ADAS 

As mentioned before, high-end and low-end models were stratified in the FARS 

datasets by using the information obtained from the auto manufacturer’s sales brochures. 

The high-end models were further delineated into those that possessed ADAS and those 

that did not possess ADAS. This allowed for greater insight into how ADAS affects 

FSLDPT safety. Low-end models in most cases did not possess ADAS technology except 

when a technology was mandated by law. Table 15 delineates the information about the 

high-end FSLDPTs between those with ADAS and those without ADAS for the different 

injuries sustained during accidents. The RAM 1500 consistently has much lower injury 

counts across all injury severities for high-end FSLDPTs without ADAS than FSLDPTs 

with ADAS. During RAM’s transition to incorporating ADAS in their FSLDPTs the 

company changed ownership from Dodge to Chrysler Fiat. The change in ownership 

appears to account for the large disparity in quantity of injuries. There may be outstanding 

differences in vehicle quality between RAM owned by Dodge and RAM owned by 

Chrysler Fiat that is beyond the scope of this study. The other vehicle model FSLDPTs did 

not change ownership; however, the Honda Ridgeline was discontinued in 2015 and 

brought back with ADAS in 2017.  
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Table 15. Table of high-end ADAS and non ADAS injuries in the 2018 FARS data for 

each of the seven FSLDPTs. 

Make & 
Model 

Injur
y 

Level 

ADA
S 

2016 

High 
w/o 
2016 

Differenc
e (%) 
2016 

ADA
S 

2017 

High 
w/o 
2017 

Differenc
e (%) 
2017 

ADA
S 

2018 

High 
w/o 
2018 

Difference 
(%) 2018 

CHEVY 
Silverad

o 

0 27 78 65% 71 51 -39% 55 68 19% 

1 20 36 44% 16 25 36% 24 23 -4% 

2 14 34 59% 21 31 32% 27 25 -8% 

3 10 23 57% 5 19 74% 15 27 44% 

4 16 54 70% 15 58 74% 28 50 44% 

GMC 
Sierra 

0 15 15 0% 9 5 -80% 15 11 -36% 

1 0 5 100% 3 2 -50% 6 4 -50% 

2 2 3 33% 4 7 43% 12 3 -300% 

3 3 6 50% 2 1 -100% 1 0 - 

4 2 9 78% 2 8 75% 5 1 -400% 

RAM 
1500 

0 100 3 -3233% 103 5 -1960% 186 9 -1967% 

1 41 4 -925% 46 3 -1433% 51 3 -1600% 

2 54 4 -1250% 58 3 -1833% 65 3 -2067% 

3 38 4 -850% 29 3 -867% 37 3 -1133% 

4 53 4 -1225% 72 3 -2300% 84 3 -2700% 

TOYOT
A 

Tundra 

0 0 21 100% 2 13 85% 1 14 93% 

1 1 1 0% 1 8 88% 0 5 100% 

2 0 3 100% 2 4 50% 0 2 100% 

3 0 2 100% 2 2 0% 2 1 -100% 

4 0 3 100% 1 7 86% 2 2 0% 

HONDA 
Ridgelin

e 

0 0 1 100% 2 11 82% 0 2 100% 

1 0 0 - 0 3 100% 0 3 100% 

2 0 0 - 0 2 100% 1 1 0% 

3 0 0 - 0 0 - 1 1 0% 

4 0 0 - 0 5 100% 0 6 100% 

NISSAN 
Titan 

0 0 4 100% 12 14 14% 10 19 47% 

1 1 0 - 4 2 -100% 5 3 -67% 

2 1 3 67% 3 3 0% 9 5 -80% 

3 0 0 - 6 4 -50% 10 4 -150% 

4 1 4 75% 8 11 27% 13 10 -30% 

FORD 
F-150 

0 1 47 98% 11 153 93% 40 102 61% 

1 0 12 100% 6 60 90% 12 24 50% 

2 3 13 77% 8 88 91% 17 35 51% 

3 0 14 100% 5 33 85% 3 27 89% 

4 2 38 95% 16 143 89% 13 184 93% 
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When looking at the totals for each FSLDPT, there are considerable differences in 

sales between the seven FSLDPTs. Ford sold nearly a million FSLDPTs in 2018 with 

Chevrolet and RAM having each sold about half as many and GMC sold approximately a 

quarter of the total FSLDPTs as Ford, respectively. The remaining three FSLDPT models 

combined sold bellow the number of GMC FSLDPTs. 

4.5.1.1 ANOVA Testing of ADAS Effectiveness 

The ANOVA test results for all the FSLDPT models are listed in Table 7. ANOVA 

tests were conducted for each of the seven FSLDPT models for three different injury 

severity groupings (No Injury, All Injuries, Fatal Injuries) from 2016 to 2018. For reducing 

fatal injuries in their respective vehicle, the Ford F150 and Chevrolet Silverado were 

statistically significant. The RAM 1500 was also statistically significant, but as show in 

Table 15, statistically significance was detrimental rather than advantageous with more 

fatalities occurring in the ADAS equipped vehicles. This trend of the RAM 1500 being 

statistically significant in a detrimental manner continued for the other three ANOVA tests.  

The number of the High-end models both with and without ADAS involved in fatal 

accidents are small, but that is a factor of there being approximately 40,000 vehicles total 

involved in fatal accidents for the approximately 240 million registered vehicles in the 

United States. This study is only looking at the high-end models of FSLDPTs which make 

up a small portion of the FSLDPTs sold each year further reducing the likelihood for large 

vehicle numbers. 
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Figure 22. Totals for crashes of high-end FSLDPTs with ADAS versus those without 

ADAS broken out by year. 

For reducing all injuries, the Ford F-150, the Chevrolet Silverado, and the Toyota 

Tundra were statistically significant. The all injuries analysis includes the fatal injury and 

the no injury totals. From reviewing the totals, the fatality reduction for Chevrolet and the 

no injury reduction for Toyota is what drove the statistical significance for the all injuries 

analysis for those two FSLDPT models. The Ford F-150 had fewer injuries for all 

individual injury severities. This all injuries category can be viewed as representing as an 

all fatal crashes category.  

For the occurrence of no injuries ANOVA test, the Ford F-150 and the Toyota 

Tundra were statistically significant. For the no injury severity totals, both the F-150 and 

the Tundra had fewer instances with ADAS equipped vehicles than with unequipped 

vehicles. While intuitively this seems in opposition to the desired outcome, it in fact is 

advantageous. Holistically these results show there were fewer accidents with the ADAS 

equipped FSLDPTs contributing to the lower totals for no injuries as shown in Figure 22. 
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4.5.2 Influence of ADAS Technology Costs 

The differences between the varying manufacturers’ FSLDPT models’ 

performance potentially lies with their choices for ADAS technologies. According to the 

SBD, each manufacture uses a unique combination of third-party suppliers for their ADAS 

technologies. RAM 1500 and Nisan Titan ADAS costs the least at $1695 and $1640 

respectively (Automotive 2019).  The three FSLDPT models that were statistically 

significant Chevrolet, Ford, and Toyota ADAS costs were $3510, $3875, $2180 

respectively (Automotive 2019). No data was listed for the Honda Ridgeline. A full cost 

breakdown is provided in Table 16. Two FSLDPT models of interest are the Chevy 

Silverado and the GMC Sierra. These two companies use the same third-party sensor 

suppliers and the cost for the sensors are similar except for Blind Spot Monitoring (BSM), 

Rear Cross Traffic Alert (RCTA), and Surround View Cameras (SVC). For the three 

sensors that are different GMC has a higher cost for them; however, Chevy not GMC 

showed statistical improvement for reducing fatal injuries. Two of these sensors, RCTA 

and SVC, should not contribute much to reducing fatal injuries as they are generally used 

in low-speed parking situations. BSM would be useful in preventing the most common 

harmful event, moving vehicle collision, but the GMC sensor costs more than the Chevy 

sensor. Also, the most common initial point of impact on FSLDPTs is across the front 

bumper region where BSM would not play a definitive role in accident prevention or injury 

severity reduction. This means that there is a minimum amount that ADAS should cost to 

have the potential to be effective, namely, about $2000 - $3000, but above that amount 

does not guarantee effectiveness.  
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Table 16. Cost breakdown for ADAS sensors of FSLDPTs. Numbers denote cost in 

dollars and numbers preceded by the letter B are part of a bundle. 
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CHEVY 
SILVERADO 
1500 

- B745 B745 B890 B890 - B745 - - 1875 3510 

FORD  
F-150 500 - B1195 B1585 B1585 B1195 - B1195 595 B1195 3875 

GMC 
SIERRA 
1500 

- B745 B745 B1315 B1315 - B745 - - 1845 3905 

HONDA 
RIDGELINE - - - - - - - - - - - 

NISSAN 
TITAN - - - B845 B845 - - - - 795 1640 

RAM 1500 B1695 B1695 B1695 B1695 B1695 - B1695 B1695 - B1695 1695 
TOYOTA 
TUNDRA - - - B2180 B2180 - - - - - 2180 

Besides the upfront cost of having a FSLDPT with ADAS, per [121] approximately 

5% – 15% of the initial cost, the cost for seemingly minor repairs has increased as depicted 

in Table 17. In some cases the cost for repair of ADAS capable parts has doubled while in 

more extreme cases increased by over twelve times the cost for a non-ADAS version of 

the part (Association 2018, Preston 2020). This does not seem right or in the consumer’s 

best interest for the cases where the addition of ADAS to the FSLDPTs did not statistically 

change accident rates from those without ADAS. Consumers are charged thousands of 

dollars upon vehicle purchase for a feature that is supposed to prevent and minimize 

accidents but that per above study result does potentially not do this as advertised. 

Furthermore, consumers are charged again for thousands of dollars when it needs to be 

replaced when it was in accident that it did not prevent. For the cases where there was a 

statistical improvement (Ford F-150, Chevy Silverado, and Toyota Tundra) from the 

inclusion of ADAS, an argument can be made for the increase in repair costs as being 

necessary to keep the FSLDPT effective at reducing accidents and injury severity. 
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Table 17. Cost of vehicle part repairs/replacements based on (Association 2018, Preston 

2020). 

PART REPLACEMENT MIN MAX 

FRONT 
BUMPER 

Basic Bumper 700 1800 

Sensors 500 1900 

Recalibration 250 600 

Total 1450 4300 

HEADLIGHTS 
AND 

TAILLIGHTS 

Halogen 200 500 
LED 750 1500 

Recalibration 100 250 

Total 300 1750 

WINDSHIELD 

Regular 300 500 
ADAS-capable 700 1500 

Sensors 800 1900 
Recalibration 250 250 

Total 1750 3650 

REAR 
BUMPER 

Basic Bumper 700 1800 

Sensors 1000 2500 

Recalibration 250 250 

Total 1950 4550 

SIDE 
MIRROR 

Regular 300 500 
ADAS-capable 1000 2500 
Recalibration 250 250 

Total 1250 2750 

4.5.3 Economic Effectiveness Synopsis 

With the ever more availability of ADAS technology in FSLDPTs, the increased 

use of ADAS and overall truck design has shown the potential to improve the survivability 

for truck occupants during an accident. There is the potential need for several FSLDPT 

manufacturers to reassess their ADAS technologies to be on par with the improvements 

found in Ford’s F-150 and Chevrolet’s Silverado as detailed in Table 8 and discussed in 

section 4.2.1 (ANOVA Testing of ADAS Effectiveness). Of the 18% of registered vehicles, 

slightly more than half show improvement in reduction of injuries and fatalities. For the 

half that showed improvement, the cost for the technologies were over $2000. Those whose 

ADAS costs below $2000 should seek to change their sensors. Those who’s ADAS cost 

meet or exceeded the $2000 - $3000 threshold, but were still not effective, should see about 
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altering the positioning of them on the FSLDPTs to achieve a statistical improvement in 

accident reduction and injury severity reduction as found in (Fish and Bras 2021).  

In (Fish and Bras 2021) the positioning of crash impact location was optimized to 

identify the best and worst positions for a FSLDPT to be impacted based on ADAS 

effectiveness. Using (Fish and Bras 2021) automotive manufacturers can further improve 

the effectiveness of their deployed ADAS technologies. The half of the FSLDPTs - GMC, 

Honda, Nissan, and RAM - that did not show improvement in safety should be regarded as 

providing features of convenience. There are cases where the increase in costs does make 

sense even though safety effectiveness is not improved during fatal accidents. For example, 

the backup camera may reduce the need for repairs from minor crashes by providing the 

driver an advantageous view of the rear area, which would save on bumper repairs. 

Spending more than $2000-$3000 on ADAS is not an absolute for determining 

effectiveness, but it is a decent first indicator.  

It is interesting that Chevrolet showed improvement while GMC did not. Both 

companies are subsidiaries of General Motors and have similar vendors for ADAS sensors. 

This is talked more about in (Fish and Bras 2021). How the ADAS technologies are 

deployed on the vehicle becomes more important for determining the effectiveness of 

ADAS for vehicles with ADAS costing over $2000- $3000. The near identical technologies 

deployed on both the Chevrolet Silverado and the GMC Sierra show that the quality of 

sensors is the same. While not confirmed, the likelihood that the Silverado and the Sierra 

have the same positioning of ADAS sensors is minimal. This likely means based on the 

findings of (Fish and Bras 2021) that the position of the sensors becomes more important 

after the proper investment has been made in the sensor technologies. The inclusion of 
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ADAS has not only increased the initial investment in FSLDPTs but also increased the 

repair costs by a significant multiple. For the cases where ADAS reduced accidents and 

injury severities, this increase may be reasonable. However, for those cases where ADAS 

did not make a statistical difference the increased cost to the consumer may not be 

warranted. There are cases where the increase in costs does make sense even though safety 

effectiveness is not improved during fatal accidents. For example, the backup camera may 

reduce the need for repairs from minor crashes by providing the driver an advantageous 

view of the rear area, which would save on bumper repairs. 

4.6 Minor Findings  

Outside of the major findings from the datamining portion of this research, there 

were minor findings that extend existing findings from general vehicle studies to 

specifically the FSLDPT. One such finding is the ratio of FSLDPT accidents for rural roads 

to urban roads. Motor vehicle deaths prior to 2016 primarily occur on rural roads and are 

usually only separated by a few percent (Institute 2019, NHTSA 2019). For FSLDPTs that 

breakdown is consistent for FSLDPT crashes. Interestingly, when looking at fatalities in 

the FSLDPT the split becomes 60-40, rural-urban, and FSLDPTs with ADAS follow this 

split. There is an exception for FSLDPTs with ADAS, where there is reverse 40-60 split 

for fatalities rural-urban occurring in 2017. An example of this mapping is shown in Figure 

23 and more figures of the mapping by brand are shown in Appendix A. 



 100 

 

Figure 23: Map of 2016 Ford accidents based on injury severity in the FSLDPT. 

4.7 Summary and Conclusions  

As dissemination of ADAS technology continues from high-end models to lower-

end models, FSLDPT occupants will likely see greater decline in fatalities and sever 

injuries for some brands, while other brands may continue to not see a change in their injury 

reductions as was shown in Table 7. This pattern will continue until those auto 

manufacturers that have not proven advantageous reassess how they equip their respective 

FSLDPTs with ADAS technologies. Those that did show statistically significant 

improvement in safety, through the addition of ADAS technologies, are reassuring since 

FSLDPTs represent 18% of registered vehicles in the US. It is also a positive that the Ford 
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F-150 the most sold FSLDPT in the US and the Chevrolet Silverado the second most sold 

FSLDPT in the US both were found to be statistically improved at reducing fatalities, with 

the F-150 showing improvements at reducing all injury severities even when adverse 

driving conditions were present. This is best enlightened by the finding that the Ford F-

150, when equipped with ADAS, provided ample time to the driver to alter the situation 

that impaired drivers were better able to avoid accidents. The Toyota Tundra demonstrates 

how ADAS was able to outperform non-ADAS during inclement weather, which shows 

that the interlacing of sensors is capable to reducing human error during inclement weather. 

The characteristics of FSLDPTs (heavier, less maneuverable, with large blind spots) 

generally increase the severity of accidents, but the adoption of ADAS has been proven to 

reduce fatalities and sever injuries in some models. These trends will likely continue as 

ADAS technology expands into new areas while diminishing the possibility for human 

error. Application of this research are already being seen in the insurance premium 

reductions for ADAS vehicle drivers. Further applications of this research in conjunctions 

with (Fish and Bras 2021) include changes to sensors, sensor positioning, and vendors who 

are contracted for the production of ADAS sensors. 
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CHAPTER 5. THE RESULTANT OF THE CONTINUED 

TRAJECTORY OF PRESENT ADAS DEVELOPMENT 

The object of this chapter is to identify the specific areas of ADAS coverage whose 

improvements through design would financially make the greatest impact. This chapter 

expands on the work of (Fish and Bras 2021), which focused on the Ford F-150 

representing 9% of registered vehicles in the United States. This chapter looks at six of the 

seven main FSLDPT, which account for 18% of registered vehicles in the United States, 

to be studied as it offers an opportunity to impact a large segment of the vehicle population. 

5.1 METHODOLOGY – An Optimization Approach 

The purpose of the methods used herein is to determine how to improve ADAS 

based on empirical data. Using a compilation of data from several sources, models of the 

costs and injury severities associated with ADAS in the Ford F-150, Chevrolet Silverado 

1500, GMC Sierra 1500, RAM 1500, Toyota Tundra, and Nissan Titan were developed. 

The models were then run through optimization tools in MATLAB to determine the best 

and worst locations of impact on the FSLDPTs. While the FSLDPTs were selected for this 

work, any vehicle could be substituted for these processes. 

5.2 OBJECTIVE FUNCTION DEVELOPMENT 

The real-world accident data regarding FSLDPTs with ADAS was taken from the 

National Highway Traffic Safety Administration (NHTSA). The NHTSA Fatality Analysis 

Reporting System (FARS) database was selected because it provided the most complete 

and detailed publicly available data concerning automotive accidents in the United States. 
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The FARS data stratifies injuries into 5 main severity levels ranging from 0 (no injury) to 

4 (fatality). The first impact locations, reported in FARS, are discretized broken into twelve 

main segments, 1-12, as shown in Figure 24 with a thirteenth option being no impact, 0 

(NHTSA 2018). It is important to note that all accidents reported in FARS involve at least 

one fatality. The injury severity range indicates individual occupant injury in each vehicle. 

It is possible for occupants of one of the vehicles in a multivehicle accident to have no 

fatalities. 

Table 18. Average financial cost by injury severity taken from 2018 (National Safety 

Council 2020). 

Injury Level Cost Injury Level (#) 
Death (K) $1,659,000 4 

Disabling (A) $96,200 3 
Evident (B) $27,800 2 
Possible (C) $22,800 1 

No injury observed (O) $12,200 0 

Automotive accidents were broken into two categories concerning the costs 

associated with the accident:  

• Costs associated with vehicle occupant injuries and 

• Costs for the repair/replacement of the vehicle component(s) damaged. 

First, the cost associated with the occupant injuries, obtained from (National Safety 

Council 2020), were discretized to match with the FARS injury levels as shown in Table 

18. With the five data points, from Table 18, discretized into the 5 injury levels a non-linear 

regression was performed to obtain Equation 3. 
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Figure 24. Areas of Impact for initial contact point diagram (NHTSA 2018).  

In Equation 3, the five discretized injury levels are associated with the injury cost 

(IC) represented by the independent discrete variable x1, injury severity.  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 56750𝑥𝑥14 − 329000𝑥𝑥13 + 586950𝑥𝑥12 − 304100𝑥𝑥1 + 12200  (3) 

The data for the repair/replacement of vehicle components cost associated with 

automotive accidents is comes from (Association 2018, Preston 2020). These repair costs 

(RC) can be divided into ADAS (maximum repair cost) and non-ADAS (minimum repair 

cost). These costs are distributed amongst their corresponding positions as shown in Table 

19.  

Table 19. Cost of repairing vehicle components (Association 2018, Preston 2020). 

Component Max Cost Min Cost Position 
Front Bumper & Lights $5,175 $1,600 12 
Rear Bumper & Lights $5,425 $2,100 6 

Right Mirror $1,375 $625 3 
Left Mirror $1,375 $625 9 
No Damage $0 $0 0 
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Plotting these two repair cost levels against their position, as done in Figures 25 

and 26, shows how the repair cost (as in Equations 4 and 5), is orders of magnitude smaller 

than injury costs (per Equation 3). To get better results from the simulations, the value for 

impact zone 0 (no impact) was set to be the same as zone 12 (front bumper) as indicated in 

Figure 26. The reason for this is that the results from using Equation 4 in (Fish and Bras 

2021) were found to cause asymmetry on the results of the simulation. Thus, Figure 26 and 

Equation 5 are used in this work. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 15.972𝑥𝑥23 − 313.29𝑥𝑥22 + 1890.8𝑥𝑥2 − 381.79    (4) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 16.409𝑥𝑥24 − 393.83𝑥𝑥23 + 2946.8𝑥𝑥22 − 7005.6𝑥𝑥2 + 5175  (5) 

The purpose of this work is to determine which ADAS zones of the FSLDPT can 

be improved, so the regression equation for maximum repair cost was selected as it 

represents vehicles with ADAS, as shown in Figure 26. In Equations 4 and 5, the 

independent variable x2 is the discrete vehicle location for impact.  
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Figure 25. The min and max vehicle repair cost curves. 

 

Figure 26. The min and max vehicle repair cost curves adjusted. 

Equations 3 and 5 are combined to form the objective function denoting Accident 

Cost (AC) per Equation 6, which shows that less expensive accidents would be driven by 

the vehicle repair costs, and the more expensive accidents are driven by the occupant injury 
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costs. This is realized by the injury severity (x1) quadratic term having a multiple over 100 

times the size of both impact location (x2) cubic and quadratic terms. Both x1 and x2 are 

discrete small values decreasing the effect of the powers of the x1 and x2 terms. 

𝑂𝑂𝑂𝑂𝑗𝑗.𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 16.409𝑥𝑥24 − 393.83𝑥𝑥23 + 2946.8𝑥𝑥22 − 7005.6𝑥𝑥2 + 12971𝑥𝑥12 −

13806𝑥𝑥1 + 19938  (6) 

5.3 CONSTRAINT FUNCTIONS DEVELOPMENT 

The development of the constraint function for initial upfront cost for ADAS 

technologies looked at two sources for the initial costs. First, the Boston Consulting Group 

had published a few papers on what people were willing to pay versus the actual cost of 

ADAS technologies (Mosquet, Andersen et al. 2015, Mosquet, Andersen et al. 2016). Their 

report used averages of costs for technologies, produced in Table 20. 

Table 20. Boston Consulting Group cost of ADAS components (Mosquet, Andersen et 

al. 2015, Mosquet, Andersen et al. 2016). 

ADAS Cost ($) 
360 view 900 

Park assist 250 
Lane departure 400 

Blind spot 600 
ACC/FCW/FCA 1,500 

Auto Park 400 

From Table 20 an initial ADAS technology cost curve equation (Equation 7) was 

extracted based on positioning of the technology on the vehicle.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 2.0436𝑥𝑥24 − 47.119𝑥𝑥23 + 353.57𝑥𝑥22 − 948.08𝑥𝑥2 + 898.46 ≥ 2000  (7) 

Equation 7 for the constraint cost (CC) uses averages from all vehicles’ ADAS 

technology initial costs. As detailed in (Fish and Bras 2021, Fish and Bras 2021), $2000 
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was the minimum cost of ADAS that were found to be effective at preventing crashes and 

reducing injury severity during crashes. A database for the cost of ADAS technologies for 

specific vehicles was found. (Automotive 2019) had ADAS costs for the FSLDPT 

specifically, so a better relation was developed by using those values for the related 

positions on the vehicle as shown in Figure 27. Interestingly the rear bumper was found to 

be the most expensive zone on the FSLDPT due to the addition of trailer backup 

technology. 
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Figure 27. The component ADAS cost for position on the vehicle. 

It was decided to use Equations 8 – 13 for the constraint cost (CC) for the 

component cost instead of Equation 7 because Equations 8 – 13 is specific for the Ford F-

150, Chevrolet Silverado, GMC Sierra, Nissan Titan, Ram 1500, and Toyota Tundra. The 

inequality for Equations 7 – 13 of greater than or equal to 2000 is the median for the ADAS 

initial costs of the FSLDPTs listed in (Automotive 2019). Worth noting is that RAM had a 

constant for its’ ADAS cost as shown in Equation 12. Hence RAM is not being optimized, 

but it is still included in the analysis. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 1.8073𝑥𝑥24 − 43.374𝑥𝑥23 + 307.99𝑥𝑥22 − 572.96𝑥𝑥2 + 798.75 ≥ 2000  (8) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 0.4578𝑥𝑥24 − 10.988𝑥𝑥23 + 83.843𝑥𝑥22 − 215𝑥𝑥2 + 965.42 ≥ 2000  (9) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 0.3984𝑥𝑥24 − 9.5623𝑥𝑥23 + 82.475𝑥𝑥22 − 301.21𝑥𝑥2 + 745 ≥ 2000  (10) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶:−0.1534𝑥𝑥24 + 3.6813𝑥𝑥23 − 31.751𝑥𝑥22 + 115.96𝑥𝑥2 + 3 × 10−10 ≥ 2000 

(11) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴: 1695 ≥ 2000 *    (12) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶:−0.7476𝑥𝑥24 + 17.942𝑥𝑥23 − 154.75𝑥𝑥22 + 565.19𝑥𝑥2 + 1 × 10−9 ≥ 2000 (13) 

5.4 MATHEMATICAL OPTIMIZATION 

Some assumptions were made to create the optimization model and interpret the 

results. The model was built using discrete data; however, the equations are continuous as 

explained in sections 2.1 and 2.2 and shown in Figure 28. This was allowed to account for 

the cost of damage in zones where the ADAS components are not physically located. It is 

also used round to the nearest impact zone, but the decimal is used to gain perspective on 

the location in the zone. Other assumptions made involved not adjusting the offsets for cost 

of injury when there was no injury. 
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Figure 28. Optimization problem for determining the optimum ADAS locations on a 

FSLDPT. 

The software used for the optimization was MATLAB R2019a (The MathWorks 

2020). The objective function, Equation 6, and the constraint function, Equations 8 – 13, 

were entered into two optimization solvers in the MATLAB optimization toolbox – 

fmincon and fminunc– pictured in Figure 29. Fmincon is for constrained non-linear 

optimization, whereas Fminunc is for unconstrained non-linear optimization. Both will 

require the change the objective function to find the maximum and minimum as the relation 

between maximum and minimum is described in Equation 14. In order to find the 

maximum unconstrained solutions, fmincon was used with the objective function altered 

using Equation 14 with lower and upper bounds set to represent the bounds set by x1 and 



 112 

x2, injury severity and impact location respectively. No constraint function was used in the 

establishment of the upper unconstrained solutions. 

All solvers for the MATLAB optimization toolbox work based on the premises of 

Equation 15. 

 

Figure 29. MATLAB optimization toolbox user interface. 

min�𝑓𝑓(𝑥̅𝑥)� =  −max�𝑓𝑓(𝑥̅𝑥)�     (14) 

𝑋𝑋�𝑘𝑘+1 =  𝑋𝑋�𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑆𝑆𝑘̅𝑘          (15) 

5.5 RESULTS AND DISCUSSION 

The objective is to find the minimum and maximum accident costs for the objective 

function per Equation 6. The function is bounded to the region of [0, 4] for x1 and [0, 12] 
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for x2 as graphed in Figure 30. Figure 30 shows that for more severe injuries the cost of the 

accident exponentially increases. While the impact zone location effects how quickly the 

accident cost increases for the severity of injury. 

 

Figure 30. Two-dimensional plot of the objective function for the cost of the accident. 

The constraint for this objective is the initial cost for the ADAS components based 

on the NHTSA impact zones. This is described by the constraint costs (CC) from Equations 

8 - 13, which are surface contours were all elevated by 10,000 to allow for intersection 

with the objective function. Otherwise, the optimizations would be the same as the 

unconstrained case. Plots of the objective function and the constraint functions are shown 

in Figure 31. The curved surfaces in Figure 31 are the objective function, and the other 

surface is the constraint functions for each of the various FSLDPTs. 
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Figure 31. Plots of the objective function intersected by the constraint functions of the 

six FSLDPTs. 

The optimization was run under two separate conditions with the constraint and 

without the constraint. For both conditions various starting points were selected for 

evaluation by using the solver methods from the optimization toolbox. The maximum and 
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minimum costs of accidents were evaluated using the maximum minimum relationship of 

Equation 14. This only mattered for the fmincon solver, as fminunc solver was only used 

for finding the unconstrained minimum accident cost. 

5.5.1 Unconstrained Optimization 

Table 21 breaks down the results from the unconstrained optimization of the 

objective function found using Fminunc optimization solver in MatLab. 

Table 21. Solution table for the various starting points (injury level, impact location) 

when unconstrained. 

Minimization Maximization 

Start Point Optimized Solution Start Point Optimized Solution 
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0 1 0.4 1.7 12,182.62 61 0 1 1.5 6.0 59,043.23 10 
0 6 0.4 1.7 12,182.62 64 0 6 4.0 6.0 1,664,424.98 6 
0 12 0.4 10.3 12,178.19 58 0 12 4.0 12.0 1,664,165.73 5 
1 1 0.4 1.7 12,182.62 37 1 1 1.5 6.0 59,043.23 12 
1 6 0.4 10.3 12,178.19 43 1 6 4.0 6.0 1,664,424.98 6 
1 12 0.4 10.3 12,178.19 39 1 12 4.0 12.0 1,664,165.73 5 
2 1 2.5 1.7 27,782.62 44 2 1 1.5 12.0 58,784.03 9 
2 6 2.5 10.3 27,778.19 44 2 6 1.5 6.0 59,043.23 12 
2 12 2.5 10.3 27,778.19 40 2 12 1.5 12.0 58,784.03 9 
3 1 2.5 1.7 27,782.62 46 3 1 4.0 12.0 1,664,165.78 7 
3 6 2.5 10.3 27,778.19 55 3 6 4.0 12.0 1,664,165.78 7 
3 12 2.5 10.3 27,778.19 39 3 12 4.0 12.0 1,664,165.72 4 
4 1 2.5 1.7 27,782.62 47 4 1 4.0 12.0 1,664,165.78 7 
4 6 2.5 10.3 27,778.19 45 4 6 4.0 12.0 1,664,165.78 7 
4 12 2.5 10.3 27,778.19 42 4 12 4.0 12.0 1,664,165.74 4 
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The maxima and minima were placed on the zone of impact diagram, Figure 24, to 

help visualize the solutions, shown in Figure 32. From this optimization it can be 

determined that the area where the higher initial cost should be directed is the front bumper 

zone of the FSLDPT. This could be done by redistributing existing costs or by adding 

additional up-front costs to the consumer. This will be discussed in a future work. These 

results are in line with the data about where the most common impact zone for the FSLDPT 

equipped with ADAS.  

 

Figure 32. Highest accident cost is a dash in zone 6 with the second highest cost indicated 

as a circle in zone 12. Lowest accident cost is a plus in zone 10 with second lowest 

accident cost is an X in zone 1. 

5.5.2 Constrained Optimization 

The process to create Table 21 was repeated under the constrained condition of 

initial cost for the ADAS technologies of the six FSLDPTs. While Table 21 is the 

optimization of the surface in Figure 30, Figure 33 shows the optimization resulting 

locations established by the intersecting surfaces of each FSLDPT in Figure 31. The results 

for the maximum cost of the accident make sense and matches to the results of the 

unconstrained optimization. What was interesting was the location for the minima, visually 
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depicted in Figure 33. The minima occur in zones 1, 3, 6, 8, and 10 depending on the 

FSLDPT. It is important to remember that the costs for each zone are solely based on the 

cost of the ADAS technologies.  

 

Figure 33. Constrained optimization results for the six FSLDPTs. Highest accident cost 

location is a dash with the second highest cost indicated as a circle and the lowest 

accident cost is a plus with second lowest accident cost is an X. 

The initial cost of zones with ADAS technologies for the constrained problem 

causes the least expensive zone for an accident to be located in a zone without ADAS due 

to the zones with ADAS acting as inflection point except in cases where the zone acts as a 
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saddle point when the optimization is searching for local minimums This can be seen from 

Figure 27 for the six FSLDPTs. In (Fish and Bras 2021), the initial cost of ADAS constraint 

curve has the cost of zone 0 to be $0, so the zones closest to zone 0 (i.e. 1) ended up being 

the cheapest. While that was a valid argument, the evaluation of this work set the value for 

zone 0 equal to zone 12 to prevent the possibility for artificial minimums, and this work 

still found zone 1 to be one of the best impact locations for minimum accident cost. There 

is not a perfect mirroring of the optimized locations depicted in Figure 33. This occurs 

because of how the optimization search algorithm solver in MatLab approaches the 

minima.  

These findings allow manufacturers information about how they can redistribute 

their investments in the ADAS for the impact zones on their FSLDPTs. Each manufacturer 

can see where their max investment costs are located on the vehicle an determine if that 

zone matches to where they want it to be located such as at the front bumper where the 

majority of fatal crashes occur. The automotive manufacturers could decide that where they 

have made investments on technology are not the ideal zones and can redistribute the 

investment to other zones. 

5.6 Discussion of Sustainability 

5.6.1 Sustainability Findings 

When evaluating the environmental sustainability of ADAS it can be bifurcated 

into (1) sustaining and preserving the health and well-being of occupants and (2) reduction 

in need to replace the vehicle or its components.  
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What is gained from the unconstrained optimization analysis is that for any vehicle 

the majority of accident costs is driven by occupant injury severity. By adding ADAS to 

prevent sever injury or death, the cost of the accident is greatly diminished. The 

overwhelming majority of fatal crashes occur is in zone 12 (NHTSA 2010-2018), which is 

the second highest cost zone on the vehicle for crashes. Materials and resources can be 

saved by redirecting their expenditure from other low cost areas, the sides of the vehicle, 

to the more severe crash prone region of zone 12. Zone 6 is another area of opportunity for 

reducing material expenditure. This zone does not need the amount of ADAS technology 

allocated to it as is currently being done. The resource from zone 6, the most expensive 

region for a crash, could be saved as this zone experiences 1/100th the fatal crashes as zone 

12 (NHTSA 2010-2018). By reallocating how and where materials for ADAS are 

expended, human lives can be preserved which leads in turn to greater societal production 

as well as the reduction in vehicle repairs and replacements. 
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Figure 34. CO2 and H2O savings of preventing crashes of pickup trucks. 

By reducing the number of crashes with significant damage the amount of CO2 is 

produced as a byproduct of the manufacturing along with reductions in other material usage 

such as copper, zinc, steel, aluminum, and plastics. As shown in Figure 34 the amount of 

CO2 and H2O saved on a per vehicle basis, assumes average vehicle weighing EPA class 2 

minimum of 6,001lbs (2722kg), is rather significant (Argonne National Laboratory 2020). 

Should ADAS reduce fatal crashes by the idealized 94% (47,000 vehicles) that would lead 

to a reduction in 138 million kg of CO2 and 514,000 m3 of water saved. A 30% (15,000 

vehicles) reduction in fatal crashes due to ADAS would save 44 million kg of CO2 and 

164,000 m3 of water. To provide perspective those are 205.6 and 65.6 Olympic size 

swimming pools of water respectively. Based on the findings of (Fish and Bras 2021) there 

appears to be a real-world reduction of fatal crashes for vehicles with effective ADAS 

between 70% and 93%.  
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5.6.2 Sustainability and Material Harvesting 

While repairs play a lesser role in the cost outcome for accidents than injury cost, 

they do still contribute to other environmental impacts. When these systems are affected 

by a crash they at a bare minimum need to be recalibrated. Recalibration alone can cost 

$250-$300 USD as shown in Table 22.  

Table 22. Expanded cost (USD) of repairing vehicle components (Association 2018, 

Preston 2020). 

Part Replacement Min Max 

Front Bumper 

Basic Bumper 700 1800 
Sensors 500 1900 
Recalibration 250 600 

Total 1450 4300 

Headlights and Taillights 

Halogen 200 500 
LED 750 1500 
Recalibration 100 250 

Total 300 1750 

Windshield 

Regular 300 500 
ADAS-capable 700 1500 
Sensors 800 1900 
Recalibration 250 250 

Total 1750 3650 

Rear Bumper 

Basic Bumper 700 1800 
Sensors 1000 2500 
Recalibration 250 250 

Total 1950 4550 

Side Mirror 

Regular 300 500 
ADAS-capable 1000 2500 
Recalibration 250 250 

Total 1250 2750 

The sensors contain plastics and metals such as copper and zinc. Copper ore is 

harvested using underground and open cut mines (Northey, Haque et al. 2013). Once the 

ore is extracted it then needs to be processed. Preforming hydrometallurgical processing 

takes four stages:  

• Mining – extraction of raw ore,  
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• leaching – reacting the ores with acid,  

• solvent extraction – recovery process of the leached coppers into copper 

sulphate,  

• and electrowinning – produces copper by using cathodes (Northey, Haque et al. 

2013). 

The lower the purity of the raw ore the greater amount of processing is required at 

each stage to refine the purity, thus leading to more by products. Zinc, which is often mined 

with lead is one of the largest contributors to heavy metal pollution in the environment 

(Zhang, Yang et al. 2012).   

The use of plastics in the ADAS technologies is also a concern as not all plastics 

are recyclable. While thermoplastics are recyclable by reheating them and can be reused, 

thermosets are a single use plastic and are generally used in greater mass in automotive 

manufacturing (Schlechter 1994).  

With all this in mind a cursory review of how much weight ADAS technologies 

contribute to the total vehicle weight. Out of 16 technologies commonly found on ADAS 

equipped vehicles (Automotive 2019), five (adaptive cruise control, lane keep assist, blind 

spot monitoring, semi-autonomous park assist, and back-up cameras) were looked at for 

third party parts across several vendors for gaining insight into the weight of the ADAS 

technologies. The total average weight of the five separate technologies was 7.2lbs (3.3kg) 

with a maximum weight of 10.5lbs (4.8kg) and a minimum weight of 4.3lbs (2.0kg). From 

this it can be inferred that a fully outfitted vehicle with ADAS could have anywhere 
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between 13.8lbs (6.3kg) and 33.6lbs (15.2kg) of ADAS technology not including the 

wiring to connect the various ADAS technologies to the vehicle’s computer. 

5.6.3 Fuel Economy 

Based on the added weight of the ADAS technologies to the vehicle, the fuel 

economy would be expected to be impacted, but due to the maximum weight only being 

33.6lbs (15.2kg) essentially the weight of luggage the impact is very minimal. This is 

approximately 0.6% of the weight of the entire vehicle. Counter intuitively the shipping 

weights of the FSLDPTs with ADAS tended to weigh about the same to slightly less than 

there non-ADAS counter parts of the same trim level. This may have something to do with 

changes to allow the installation of ADAS technologies or it may be some other change 

unknown to the authors. In fact, based on fueleconomy.gov, the same trim level Ford F-

150 with ADAS gets 17.0 mpg (7.2 kpl) versus the without ADAS getting 16.0 mpg (6.8 

kpl) (United States Environmental Protection Agency). This leads to the question about 

newer more fuel-efficient vehicles entering the vehicle fleet will the current ADAS 

vehicles lead to environmental issues? As of now this is not a concern as they provide a 

safer driving experience than their non-ADAS counterparts leading to greater sustainability 

in preserving human life. 

5.7 Future ADAS Design 

When it comes to designing future ADAS technologies there are a few things that 

can be gained from this work. One option is to look at the costs of the technologies and 

redirect where the expenses for ADAS should be redistributed. From the optimization, the 

technology used for the ADAS in the rear of the Ford, Chevy, GMC, and RAM FSLDPTs, 
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zones 6 and 12, have the potential for a reduction in the cost. Whether this reduction occurs 

in the form of restructuring the quality of the zones 6 and 12, the rear bumper and front 

bumper, ADAS technologies. This could be done through reducing the quality of the 

technologies present in those zones or the removal of certain technologies while improving 

other technologies in those zones. It can be debated on the need for zone 6 ADAS to be 

invested in as much as it currently is, since the data used to construct this optimization 

comes from fatal accidents. The utility of zone 6 would be more important for low severity 

cosmetic damage accidents. Zone 12 poses a different path for future designs. The most 

common zone to be involved with fatal accidents is zone 12, the front bumper, as shown 

in Figure 35. 
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Figure 35. Accident impact locations for six FSLDPT in 2018 developed from NHTSA 

FARS data (NHTSA 2018). 

For future designs of ADAS configurations, strong consideration for the best and 

worst impact areas should be taken into account. More emphases should be placed on the 

design of ADAS sensors located in zone 12. This zone is most often involved in accidents 

as shown in Figure 35. There are many factors involved in accidents and it is a 

simplification to assume that ADAS by itself can prevent accidents. With that said, 

automakers should improve certain zones of ADAS while halting and evaluating the 

necessity of other zones of ADAS. With the exception of zone 12, the other zones should 

be seen as lesser priorities for development and advancement of ADAS. These lesser 

priority zones provide convenience for the driver rather than substantively improved safety 

as seen by observing Figure 35, which is for both ADAS and non-ADAS. Which leads on 

to wonder how these systems could be adjusted to provide what is needed for convenience, 

while not exceeding those needs and becoming too costly. There are options here to either 
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decrease the quality of the sensors, halt further development of ADAS in those zones, seek 

out different ADAS technologies, continue to improve ADAS in those zones blindly 

hoping for an improvement in safety, or stay the present course of ADAS development.  

This chapter uses the Ford F-150, Chevy Silverado 1500, GMC Sierra 1500, RAM 

1500, Nissan Ridgeline, and Toyota Tundra as its agents for study, but as previously stated 

these practices and principles could be applied to other vehicles. The values used to create 

Figure 27 for the cost of ADAS components could have been done for any individual 

vehicle or groups of vehicles.  

5.8 Synopsis 

Through the use of optimization for design improvements of FSLDPTs’ ADAS it 

has been determined that zone 12, the front bumper, of the vehicle is ripe for continued 

improvement. Zone 6, the rear bumper, was found to be over developed for the level of 

safety that it provides in reducing accident injury severity. The other zones show there is 

not a need for improvement over their current standing. It is understood that these 

simulations were built on publicly available data for ADAS costs of associated with each 

of the specified FSLDPTs. That said, real damage costs from accidents may differ due to 

inclusion of other components of the vehicle such as the frame, the sheet metal, the tires, 

etc. It is also plausible that the automotive manufacturers have private details regarding the 

cost of the ADAS technologies in their respective FSLDPTs. Case in point, the Toyota and 

the Nissan did not have public data available for the cost of ADAS in zones 12 and 6, front 

and rear bumpers, respectively. It is a well know law that in the US all new vehicles now 

must have a rear camera, which would be an ADAS technology in zone 6. The sources for 
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this research did not contain financial information about the aforementioned zone, and thus 

resulting in the exclusion of any cost for said zone when constructing the constraint 

equations for the Toyota and Nissan FSLDPTs. From the findings presented in this paper, 

automotive manufacturers can make informed financial decisions when developing and 

deploying ADAS technologies. 
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CHAPTER 6. A NEW PATH FORWARD: THE DEVELOPMENT 

OF BIOINSPIRED CONNECTED ADAS 

There are a number of sources for connected ADAS as discussed in Chapter 2 

section 3, but none have looked at how biological principles can be applied to ADAS. A 

number of ideas promoted for connected ADAS do have biological basis such as spacing 

of individuals while moving in groups (Yang, Liu et al. 2004, Kunze, Haberstroh et al. 

2011, Yuan, Tasik et al. 2020). Even in this obvious instance of biological inspiration, no 

research has pointed to biology as a source of inspiration. Also, the protocols of how ADAS 

could be connected, proposed by others, lacks evaluation for biological inspiration. This 

research is the first to look to biology for inspiration for the connection of ADAS. 

Biology has a number of analogous systems to automotive navigation. There are 

numerous instances of animals using landmarks, celestial navigation, and trail markings 

(Wehner and Menzel 1969, Hölldobler 1980, Chameron, Schatz et al. 1998, Menzel, 

Kirbach et al. 2011) similar in function to how the global position systems (GPS) or the 

Russian GLONASS operate. These can be thought of as far field communication for 

connected vehicles as GPS navigation systems in vehicles or on smartphones provide 

information about delays due to construction, traffic jams, and accidents. GPS navigation 

was included in the potential function tree for connected vehicle driving in chapter 3 

because it links vehicles through a means of one way communication. In this manner, GPS 

acts as long-distance vehicle connectivity. This is great for improving travel times and the 

environmental impact of driving. While the far field connectivity of vehicles is important, 
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the main focus of where this research intends to concentrate is on the near field connectivity 

of vehicles. The local communication of vehicles is important for crash prevention.  

From the biology literature review a number of biological principles for how 

animals self-organize, communicate, and signal in the context of collision avoidance for 

group navigation became apparent. From this two main principles of biologically inspired 

connectivity – aposematism and bargaining – have been identified (West, Griffin et al. 

2007, Caro and Allen 2017) as ways to improve vehicle crash avoidance through connected 

ADAS. While there are other biological inspirations found in Chapter 2 section 3, such as 

Leuckart’s law and individual identifiable voices in a group, they function as mainly 

tertiary improvements to the two main principles. 

6.1 Aposematism Connectivity for Vehicle Signaling  

One manner to connect vehicles is through the use of systems that already exist on 

vehicles. All vehicles have an array of lights on the front and rear of the vehicle. The front 

of the has daytime running lights, low beams, high beams, and turn signals as standard on 

all vehicles with some having the addition of fog lamps. On the rear of the vehicle there 

are brake lights, backup lights, and turn signals as standard on all vehicles with some newer 

models now having rear fog lamps. These lights all have standardized meanings to drivers. 

For example, everyone is aware that the red lights on the rear of a vehicle means the car is 

braking when illuminated. The use of these lights is a means of communication among 

vehicles that already provides local connectivity. In most cases, the interpretation of these 

signals is left to the driver to interpret and accordingly react.  
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A growing population of vehicles are equipped with rear facing sensors. From the 

government mandated rear camera to other optional sensors such as reverse sensing 

systems or cross traffic alert, vehicles’ ADAS is providing a detailed view of what is 

occurring to the rear of the vehicle. The instance of backing up or blind spot monitoring is 

currently the only times these ADAS systems are being put to use. Since most fatal crashes 

are associated with the front of the vehicle crashing into an object, it would be beneficial 

for these rearward facing systems to be able to communicate with the follow vehicle. If the 

vehicles were connected to each other, these systems on the lead vehicle could pass 

information to the follow vehicle if it is following too closely for the traveling speed.  

From biology, aposematism – visual anti-predator signaling to the predator of a 

warning that attack will likely precipitate negative outcomes for the aggressor (Caro and 

Allen 2017) – provides an opportunity for how to connect vehicles. The infrastructure for 

doing this already exists on a large portion of vehicles. It would simply involve an 

inexpensive software upgrade to allow for vehicles to signal to prevent a crash from 

occurring similar to aposematism in biology for when a predator is nearby. By turning the 

rear sensors to actively monitor the rear of the vehicle, should another vehicle approach 

either too quickly or be following too closely the rear facing ADAS could visually signal 

the driver of the offending vehicle that they need to slow down and move away.  

Visual signals are widely used in biology (Gross 2012, Heard-Booth and Kirk 2012, 

Hemelrijk and Hildenbrandt 2012, Chan and Gabbiani 2013, Benaragama and Gray 2014, 

Caro and Allen 2017, Sekar, Tapia et al. 2017, Farkas and Wang 2018) and are already 

being used in automobiles in the form of lights. By linking the ADAS technologies to the 

vehicle lights, which is achievable with just a minor software update, relay logic controller, 
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and wiring, vehicle would have connected ADAS at a reasonably affordable level without 

the need for automotive manufacturers to make large investments in hardware or new 

technology. This could be achieved at several levels of connectivity from the simple case 

of the follow vehicle is too close so rear brake lights illuminate similar to a braking case. 

This would signal to the driver of the offending vehicle to slow down as visual signals in 

biology are better detected due to contrast or change over static patterns. It could also be 

distinct by having the light flash in a distinct pattern. It could be integrated with other 

ADAS systems to have the turn signal light illuminate to indicate changing lanes is a 

possibility. Figures 36 – 39 show potential lighting configurations for different signal for 

communicating to the follow vehicle. 

 

Figure 36. Slow down indicated by having the brake lights flash. 
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Figure 37. Slow down indicated by having the brake lights flash and the left turn signal 

solid to indicate that lane is available. 

 

Figure 38. Slow down indicated by having the brake lights flash and the right turn signal 

solid to indicate that lane is available. 
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Figure 39. Slow down indicated by having the brake lights flash and the both turn signals 

solid to indicate that both right and left lanes are available. 

While Figures 36 – 39 show how visual one-way communication could occur, 

Figures 40 – 43 demonstrate how this could be turned into two-way communication by 

having the follow vehicle use its front lights to send back visual signals to the driver of 

lead vehicle. This is also useful to have the signaling available on the front of the vehicle 

for instances of a front-to-front collision. These signals could be used to stop the vehicles 

or have them change lanes depending on the sophistication of the system and the 

availability of space to move. Having both front and rear signaling moves into the realm 

of connected vehicle bargaining.  
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Figure 40. High beams flashing to signal they are too close to vehicle in front of them.  
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Figure 41. High beams flashing to signal they are too close to vehicle in front of them 

and left turn signal solid to indicate lane to left of driver is available. 

 

Figure 42. High beams flashing to signal they are too close to vehicle in front of them 

and right turn signal solid to indicate lane to right of driver is available. 
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Figure 43. High beams flashing to signal they are too close to vehicle in front of them 

and both turn signal solid to indicate lanes to left and right of driver are available. 

6.2 Connected Vehicle Bargaining 

In nature social animals often bargain over resources for the good of the group 

(Ross-Gillespie and Griffin 2007, West, Griffin et al. 2007). This principle of bargaining 

has been applied in many fields of work, most notably economics (Nash 1950). By 

applying the principle of bargaining to connected vehicles optimal outcomes can be 

achieved for crash avoidance.  

6.2.1 Generally Applied Connected Vehicle Bargaining 

In the general case of having vehicles bargain with each other, certain information 

will need to be passed between vehicles in order to achieve the desired outcome of collision 

avoidance. With that said, as noted in biology error in transmission of signals does occur 
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(Lee, Ward et al. 2017). To mitigate against signal error which occurs in biology, the 

vehicle should initially act in a greedy fashion, doing what is best for the safety of the 

individual vehicle, to overcome this limitation. Then once communication is established 

and best course of action is determined, the individual vehicles should bargain and do what 

is best for the group.  

By acting in this manner, this applies a type of redundancy for the conditions where 

connectivity cannot be established both ways. In Chapter 3, three pairings for the smart-

vehicle were established – smart to smart, smart to semi-smart, and smart to dumb. An 

expanded listing of pairings: 

• Smart to smart, 

• Smart to semi-smart, 

• Smart to dumb, 

• Semi-smart to semi-smart, 

• Semi-smart to dumb, 

• and dumb to dumb. 

A breakdown of how the three main pairings (smart to smart, smart to semi-smart, and 

smart to dumb) interact is shown in Figure 10 in Chapter 3 section 2. By having the smart-

vehicle act in a manner that is best for its safety first and then acting in the best interest of 

the pairing, the smart-vehicle insulates itself against the possibility of doing what is best 

for the group while the other vehicle persists in its trajectory for a collision. Thus, this 

would lead to a crash if the smart-vehicle were not to act in its best interest firsts. In cases 
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where connectivity cannot be established traditional ADAS technologies would act as a 

last line of defence as they do presently. 

Once the smart to smart connection is established, what should be communicated 

is the next important step for determining the best outcome for the pairing of vehicles. Here 

a mainly physics/dynamics-based optimization will lead to the best outcomes. Another 

characteristic that some vehicles would transmit would be if they were an emergency 

vehicle. By including this emergency vehicle status in the connectivity transmissions, a 

ranked order priority can be established. This higher priority rank for emergency vehicles 

gives the emergency vehicles the ability to keep moving and avoid the need to slow down 

especially when time is a critical factor for their mission, be it an ambulance, fire truck, or 

police cruiser.  

Of course other factors, can be obtained from other sensors on the smart-vehicle, 

such as road conditions and if other lanes are available for the vehicle to move. The smart-

vehicles would exchange information about their respective weights, velocities, and 

relative positions for use in the optimization. 

There are two main ways to determine if a crash has the potential to occur. One is 

directly determine the position, velocity, and acceleration of the vehicles involved and 

determine if they will intersect with each other, thus resulting in a crash. The other is to 

establish fields in front and behind the smart-vehicle based on its own travel velocity. If 

these fields are violated by another vehicle then the smart-vehicle responds through the 

established process of first moving to the safest location before bargaining to a more 

optimal location. In either of these cases they will be governed in some manner by 
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Equations 16 – 20. The α, F, m, t, x, v in Equations 16 – 19 are for acceleration, force, 

mass, time, distance, and velocity respectively. Denominations of subscript 0 indicate an 

initial value. For Equation 16, the equation means that the final velocity is equal to the 

initial velocity plus the acceleration multiplied by time. Since acceleration is the derivative 

of velocity with respect to time, Equation 16 is really the final velocity is equal to the initial 

velocity plus the change in velocity. For Equation 17, is developed by transforming t based 

on the definition of acceleration previously mentioned. Equation 18 is from the definition 

of velocity being the derivative of position with respect to time, so multiplying the velocity 

by time yields the final position. Equation 19 is developed by combining Equations 16 and 

18 and using the definitions for velocity and acceleration. Equation 20 is Newton’s second 

law of motion.  

𝑣𝑣 =  𝑣𝑣0 + 𝑎𝑎𝑎𝑎      (16) 

𝑣𝑣2 =  𝑣𝑣02 + 2𝑎𝑎(𝑥𝑥 − 𝑥𝑥0)     (17) 

𝑥𝑥 = 𝑣𝑣𝑣𝑣       (18) 

𝑥𝑥 =  𝑥𝑥0 + 𝑣𝑣0𝑡𝑡 + 1
2
𝑎𝑎𝑡𝑡2      (19) 

𝐹𝐹 = 𝑚𝑚𝑚𝑚      (20) 

Equations 16 – 20 were used to develop the optimization code found in Appendix 

C. The equations were also used for the analytics evaluation of the proposed biologically 

inspired connected system. The testing and evaluation of the system will be discussed in 

Chapter 7. 
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6.2.1.1 Design of the Optimization of Connected Vehicles 

Two main approaches, Archimedean (goal weighting) and Lexicographic (rank 

ordering) optimums, immediately spring forth as possible approaches for finding the 

optimized solution for both vehicles. Finding the Archimedean optimum is achieved by 

weighting the values of each goal in a set and comparing the set values, and finding the 

Lexicographic optimum is found by comparing a hierarchy of goals from different sets. 

Both approaches are useful for assigning a hierarchy of importance to goals. Other 

approaches such as mapping the goals to the criterion space can be done to find the best 

possible outcome.  

The objective is to minimize automotive crashes. The goals are to maintain at least 

a safe distance between vehicles, to have as low of a change in acceleration felt by the 

vehicle occupants, and to not impede the travel of emergency vehicles (police cruisers, 

ambulances, and fire trucks). In the case where the vehicle’s weight is only as detailed as 

to which EPA weight class it belongs, a lexicographic approach may be preferable for 

finding the objective.  

For the design of the vehicle model, there are a number of given variables:  

• Initial speed of vehicles: v1 & v2, 

• Emergency vehicle status of vehicles: e1 & e2, 

• Distance between vehicles: d. 

These givens would be obtained through a communication protocol discussed in section 

6.3. The objective function for this problem is shown in Equation 21. Where 𝑥̅𝑥 is an array 



 141 

of input variables. The weights assigned to each part of the objective function were 0.6 for 

the emergency vehicle function, 0.3 for the maintaining at least a minimum safe follow 

distance function, and 0.1 for the minimum acceleration felt by occupants function. 

𝑚𝑚𝑚𝑚𝑚𝑚�𝐹𝐹(𝑥̅𝑥)� = 0.6 𝐸𝐸(𝑒̅𝑒) + 0.3 𝐷𝐷�𝑣̅𝑣, 𝑑̅𝑑� +  0.1 𝐴𝐴(𝑣̅𝑣)    (21) 

This objective function is subject to the constraint Equations 22 – 23. Equation 22 

is based on what the standard vehicle’s max acceleration is able to achieve before loss of 

control (Sawicki 2016). This could be different for higher-end vehicles such as luxury 

sports cars (i.e. BMW M3, Toyota Celica GT, etc.). 

𝑎𝑎 ≤ 4.6 𝑚𝑚 𝑠𝑠2�      (22) 

 ∆𝑣𝑣 ≤  𝑑𝑑
𝑡𝑡
      (23) 

The constraint equations were developed from particle physics and dynamics 

Equations 16 – 20. Since the acceleration in Equation 22 is limited to a max of 4.6 m/s2 

based on (Sawicki 2016), there is not a need to know the mass of each vehicle. A more 

complex model could be developed that uses the mass of the vehicles to determine what 

the upper limit for acceleration could be for a specific vehicle.  

A common rule for following distance (d in Equation 23) is three seconds behind 

the lead vehicle (Driving Test Success 2020). Table 23 breaks down following distances 

for common travel speeds in the US. 
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Table 23. Safe following distances for common speeds in the US. 

Travel Speed Following Distance Common Locations of Speeds 
Used for Roads in the US [mph] [kph] [Meters] [Yards] 

10 16 13 14 Parking lot speed 
25 40 34 37 Residential areas 
35 56 47 51 Urban 4-lane roads 
45 72 60 66 Urban highway 
55 89 74 81 County highway 
65 105 87 95 Interstate highways 
80 129 107 117 Max speed limit in US 

140 225 188 206 Max speed of US vehicles 

 The objective is the find the min(E, V, A). E is the emergency vehicle status. V is 

the change in the vehicles’ velocities, and A is the acceleration of the vehicles involved. 

Table 24 breaks out the givens, find, objectives, and assumptions. Simplifications were 

made for the problem such as setting the maximum acceleration change to a constant value 

rather than compute it based on the mass of the vehicles. In Table 23, 1 and 2 are for the 

two vehicles involved, and i and f are for initial and final values. In Table 23 a, d, e, and v 

are for acceleration, distance, emergency vehicle status, and velocity.  

Table 24. Givens, find, objectives, and assumptions for the development of the connected 

vehicle bargaining problem. 

Givens Find Objectives Assumptions 
v1i & v2i v1f & v2f min(E) ai ≤ 4.6 m/s2 
e1 & e2 a1 & a2 min(V) t = 3s for a safe stop 
di  min(A)  

 The optimization code for connected vehicle bargaining can be found in Appendix 

C. Chapter 7 discusses the results of the optimization as well as the analytics of biologically 

inspired advanced driver assistance systems. 

6.2.2 Connected Vehicle Bargaining for the Aposematism Condition 
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For the case of connecting vehicles based on Aposematism in animals, vehicles can 

bargain using signalling from their lights as discussed previously. This mode does limit the 

amount of information transferable between the vehicles. Instead of sending weight, 

velocity, relative position, and emergency vehicle status (if applicable), the vehicles could 

only transfer a weight range in the form of light flashing frequency and if they are smart-

vehicles (based on their ability to respond to signals). Limiting what data is transferred 

between vehicles would assist in computation time for quicker action to be taken by the 

BICADAS equipped vehicle. The weight ranges would be based on EPA weight classes. 

This would allow for relative weight comparisons to be used by the optimization program 

discussed in section 6.2.1.1. The other information such as the velocity would need to me 

gained by use of other sensors on the vehicles. As discussed previously the smart-vehicles 

would move to the safest position for them until confirmation of the other vehicle also 

being smart is detected. This detection could be done through the use of the vehicle’s 

cameras.  

In terms of the aposematism signalling, there are again the three cases: smart to 

smart, smart to semi-smart, and smart to dumb. In the case of smart to smart, both vehicles 

would use their lights to indicate to each other based on the pre-described patterns. Once 

the signals have been transmitted by the lights and received by the camera sensors, the 

vehicles would move according to the optimized plan for the grouping. In the second case 

of smart to semi-smart, the semi-smart vehicle would be able to send signals, but it would 

be unable to automatically act on the information transferred. It would be beneficial for the 

semi-smart vehicle in that should another vehicle become likely to collide with it, it can 

signal the other vehicle. In the case of the other vehicle being a smart vehicle, it can take 
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action, and in the case of a dumb vehicle, the light signals from the smart vehicle can still 

signal the dumb vehicle’s driver of the impending collision. In the other case of smart to 

dumb, the smart vehicle would transmit the signals and there would be no visual response 

by the dumb vehicle. The advantage here is the light signalling could be seen by the dumb 

vehicle’s driver who could react accordingly.  

6.3 Means of Connecting Vehicles 

Driver reaction takes between 0.7s and 1.5s, which leads to an accordion effect for 

vehicles (Yang, Liu et al. 2004) even when crashes are avoided. Having smart vehicles 

connected would avoid this accordion effect and lead to better traffic flow and fewer 

crashes. There are many ways vehicles could be connected for V2V communication. The 

optimized connected vehicle protocol outlined in section 6.2.1.1 could be applied through 

many different means of V2V communication. There are a number of communication 

protocols that already exist that could be adapted or are already in place for V2V 

communication. Table 25 is of a several protocols that could be used for V2V 

communication with their theoretical maximum range and data transfer rates. 

Table 25. Communication protocols that could be used for V2V communication. 

Protocol Max Range Max Throughput References 

DSRC 1000m 54 Mbps 

(Yang, Liu et al. 2004, Hafner, 
Cunningham et al. 2013, Johansen 

and Løvland 2015, Tsugawa, 
Jeschke et al. 2016, Kukkala, 

Tunnell et al. 2018) 

DGPS Global 57.6 kbps 

(Meng, Wevers et al. 2004, Yang, 
Liu et al. 2004, Hafner, Cunningham 

et al. 2013, Johansen and Løvland 
2015, Sun, Vianney et al. 2020) 

VANETs 200m 11 Mbps (Chuah and Fu 2006, Yuan, Tasik et 
al. 2020) 
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It is important to point out that 3G, 4G, and 5G all have to travel from the vehicle to 

a tower and then to the other vehicle for information communication, which effectively 

halves the data max throughputs to 21Mbps, 500Mbps, and 25Gbps respectively. With that 

said Table 25 can be plotted to visually represent how the different communication 

protocols perform relative to each other as shown in Figure 44. The DSRC was a protocol 

set aside by the US government for V2V communication in the early 2000s. If the DSRC 

is used as a standard for comparison of the other communication protocols, 4G, 5G, VLC, 

and Wi-Fi all have greater data throughput rates with 3G being slightly below the DSRC. 

With respect to range, 3G, 4G, 5G, VLC, and DGPS have greater range that they are 

effective over than the DSRC. Between the two parameters only 4G, 5G, and VLC meet 

or exceed the threshold set by the DSRC. Of the three communication protocols that can 

outperform the DSRC protocol, VLC uses visual light for its communication and would be 

the most adaptable to the aposematism connectivity case detailed in this chapter. It does 

have the downside of being affected during deprecated visual conditions such as rain or 

snow as well as when line of sight is obstructed such as by a hill. 

MANETs 250m 2 Mbps (Nadeem, Dashtinezhad et al. 2004, 
Sawhney and Vohra 2012) 

Wi-Fi 90m 2.4 Gbps (Mitchell 2020) 

3G 3000m 42 Mbps (Kanchwala 2021, Rogerson and 
Kavanagh 2021) 

4G 3000m 1 Gbps (Kanchwala 2021, Rogerson and 
Kavanagh 2021) 

5G 3000m 50 Gbps (Kanchwala 2021, Rogerson and 
Kavanagh 2021) 

VLC (LED) 2000m 500 Mbps (Siemens 2012) 
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Figure 44. Range throughput plot of different potential V2V communication protocols. 

Using VLC to communicate and connect vehicles the flow diagram in Figure 10 

could be updated as shown in Figure 45. In doing so even the smart to dumb and smart to 

semi-smart cases would have an improvement over traditional ADAS because of the lights 

provide visual signals that the drivers of the non-BICADAS (smart vehicles) to observe 

and react upon themselves.  
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Figure 45. Logic flow diagram for determining how BICADAS equipped vehicles using 

VLC interact with other vehicles.  
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CHAPTER 7. TESTING OF THE BIOINSPIRED CONNECTED 

ADAS 

The evaluation of the biologically inspired connected advanced driver assistance 

systems (BICADAS) can be achieved in two main manners. The first is to evaluate 

BICADAS from a pure physics and dynamics perspective. Doing so can evaluate the 

theoretical potential BICADAS can provide for vehicle accident prevention. The second 

means of evaluation is to analyze the optimization that was described in section 6.2.1.1 and 

whose code is available in Appendix C. This will provide an idea about how these systems 

could interact in a practical manner.  

7.1 Analytical Evaluation of Biologically Inspired Connected ADAS 

It is important to recognize that there are a number of viable communication 

protocols that meet or exceed the established DSRC communication bandwidth setup by 

the government for the purpose of V2X communication. These communication protocols 

were shown in Figure 44 and a view of the communication protocols that exceed the 

minimum requirements of the DSRC capabilities are shown again in Figure 46 in a zoomed 

in view. 
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Figure 46. Communication Protocols that surpass the established DSRC. 

 Of the three protocols for communication (4G, 5G, and VLC) shown in Figure 46 

that surpass the minimum viability established by the DSRC communication protocol, only 

the VLC is a direct link between the two vehicles. 4G and 5G must first pass to a 

communication tower during their transfers of information. As such the max through puts 

for 4G and 5G would be effectively halved as shown in Figure 47. Even when halved for 

throughput both still outperform the DSRC communication protocol. 4G halved and VLC 

now both have a max throughput of 500 Mbps, while 5G halved is 2500 Mbps. For the 

reader, Figures 46 and 47 have different scales for their X- and Y-axes than Figure 46. 

Figure 46 has a log-log axes whereas Figures 46 and 47 have a log scale Y-axis and a linear 

X-axis with the origin set to (1000, 50) verses an origin of (1, 0.01) in Figure 46. 
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Figure 47. Communication Protocols that surpass the established DSRC with 4G and 

5G halved. 

The analytical evaluation of BICADAS is based on the principles governing 

physics and dynamics of bodies. In some instances, bodies can be simplified to particle 

physics for evaluation. In either case, the evaluation will be mainly conscribed to Equations 

16 – 20 which are reproduced here. 

𝑣𝑣 =  𝑣𝑣0 + 𝑎𝑎𝑎𝑎      (16) 

𝑣𝑣2 =  𝑣𝑣02 + 2𝑎𝑎(𝑥𝑥 − 𝑥𝑥0)     (17) 

𝑥𝑥 = 𝑣𝑣𝑣𝑣       (18) 
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𝑥𝑥 =  𝑥𝑥0 + 𝑣𝑣0𝑡𝑡 + 1
2
𝑎𝑎𝑡𝑡2      (19) 

𝐹𝐹 = 𝑚𝑚𝑚𝑚      (20) 

There are two main scenarios that are seen in the NHTSA FARS datasets for 

vehicle-on-vehicle crashes. The first is front bumper on front bumper as shown in Figure 

48, and the second is front bumper to rear bumper as shown in Figure 49. It again is worth 

mentioning that FARS only contains data about vehicles involved in crashes that resulted 

in a fatality, but it is reasonable to believe these two types of crashes result in non-fatal 

crashes as well. Essentially if it can avoid the most extreme scenario, a fatal crash, it will 

avoid more minor crashes, non-fatal, as well. 

 

Figure 48. Front bumper on front bumper crash. 

 

Figure 49. Front bumper on rear bumper crash. 

7.1.1 Front Bumper to Front Bumper Collision 

In the case depicted in Figure 48 (front bumper on front bumper), one of the 

vehicles would need to change lanes preferably to a lane situated to the right of the driver. 

Should that option not be available immediately, both vehicles will need to slowdown. This 

slowdown could lead to both vehicles braking should neither be afforded the opportunity 
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to change lanes. Most vehicles can comfortably accelerate and decelerate at a rate of 4.6 

m/s2 (Sawicki 2016) and in emergency cases vehicles can brake with a max deceleration 

of 6.0 – 9.3 m/s2 (Kudarauskas 2007). Max braking is calculated using Equations 24 and 

25 which come from (Oppenheimer 1977, Kudarauskas 2007).  

𝛼𝛼𝑥𝑥𝑥𝑥 =  𝜑𝜑𝑥𝑥 ∙ 𝑔𝑔      (24) 

𝛼𝛼𝑥𝑥𝑥𝑥 ≥ [0.1 + 0.85(𝜑𝜑𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 − 0.2)] ∙ 𝑔𝑔    (25) 

Where αxn is the deceleration of the vehicle, ϕx is the coefficient of longitudinal cohesion 

between the tires of the vehicle and the ground (dry asphalt: ϕx = 0.8), and g is the 

acceleration due to gravity (9.81 m/s2). 

 

Figure 50. Two vehicles facing impending front bumper to front bumper collision. 

Based on Equation 17 under the condition show in Figure 50, Table 26 was 

developed where both vehicles are moving towards each other at the same velocities and 

cannot change lanes. When acceleration is greater than or equal to -4.6 m/s2 the vehicles 

can both easily brake to avoid crashing into each other. For accelerations less than -4.6 

m/s2 and greater than or equal to -9.3 m/s2, are shown in orange in Table 26 and represent 

emergency braking to avoid collision, but still do not crash into each other. For 

accelerations less than -9.3 m/s2, are shown in red in Table 26 and represent that even with 

emergency braking a crash will still occur. Again, Table 26 assumes that there is no 
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possibility of either vehicle moving out of the other vehicle’s way by changing lanes, and 

both vehicles are moving in opposite directions at the same initial velocities.  

Table 26. Head on impending collision avoidability by braking showing decelerations 

achieved by the proposed BICADAS technology. 

Initial Distance Initial Velocities Final Velocities Acceleration Change 
(m) (mph) (m/s) (mph) (m/s) (m/s2) 
10 10 4.5 0 0 -2.0 
20 10 4.5 0 0 -1.0 
30 10 4.5 0 0 -0.7 
40 10 4.5 0 0 -0.5 
50 10 4.5 0 0 -0.4 
20 25 11.2 0 0 -6.2 
30 25 11.2 0 0 -4.2 
40 25 11.2 0 0 -3.1 
50 25 11.2 0 0 -2.5 
60 25 11.2 0 0 -2.1 
30 35 15.6 0 0 -8.2 
40 35 15.6 0 0 -6.1 
50 35 15.6 0 0 -4.9 
60 35 15.6 0 0 -4.1 
70 35 15.6 0 0 -3.5 
40 45 20.1 0 0 -10.1 
50 45 20.1 0 0 -8.1 
60 45 20.1 0 0 -6.7 
70 45 20.1 0 0 -5.8 
80 45 20.1 0 0 -5.1 
60 55 24.6 0 0 -10.1 
70 55 24.6 0 0 -8.6 
80 55 24.6 0 0 -7.6 
90 55 24.6 0 0 -6.7 

100 55 24.6 0 0 -6.0 
70 65 29.1 0 0 -12.1 
90 65 29.1 0 0 -9.4 

110 65 29.1 0 0 -7.7 
130 65 29.1 0 0 -6.5 
150 65 29.1 0 0 -5.6 
90 80 35.8 0 0 -14.2 
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Initial Distance Initial Velocities Final Velocities Acceleration Change 
(m) (mph) (m/s) (mph) (m/s) (m/s2) 
110 80 35.8 0 0 -11.6 
130 80 35.8 0 0 -9.8 
150 80 35.8 0 0 -8.5 
170 80 35.8 0 0 -7.5 

Unlike the values in Table 26, which are the result of an immediate recognition that 

could only be achieved through the use of the proposed BICADAS technology, Table 27 

represents what a human driver could achieve under the same conditions without the use 

of BICADAS assuming a 0.7 second reaction time to begin braking. 

Table 27. Head on impending collision avoidability by braking showing decelerations 

achieved by a human with a 0.7 second reaction time. 

Initial Distance Initial Velocities Final Velocities Acceleration Change 
(m) (mph) (m/s) (mph) (m/s) (m/s2) 
10 10 4.5 0 0 -2.9 
20 10 4.5 0 0 -1.2 
30 10 4.5 0 0 -0.7 
40 10 4.5 0 0 -0.5 
50 10 4.5 0 0 -0.4 
20 25 11.2 0 0 -10.3 
30 25 11.2 0 0 -5.6 
40 25 11.2 0 0 -3.9 
50 25 11.2 0 0 -3.0 
60 25 11.2 0 0 -2.4 
30 35 15.6 0 0 -12.9 
40 35 15.6 0 0 -8.4 
50 35 15.6 0 0 -6.3 
60 35 15.6 0 0 -5.0 
70 35 15.6 0 0 -4.1 
40 45 20.1 0 0 -15.6 
50 45 20.1 0 0 -11.3 
60 45 20.1 0 0 -8.8 
70 45 20.1 0 0 -7.2 
80 45 20.1 0 0 -6.1 
60 55 24.6 0 0 -14.1 
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Initial Distance Initial Velocities Final Velocities Acceleration Change 
(m) (mph) (m/s) (mph) (m/s) (m/s2) 
70 55 24.6 0 0 -11.5 
80 55 24.6 0 0 -9.6 
90 55 24.6 0 0 -8.3 

100 55 24.6 0 0 -7.3 
70 65 29.1 0 0 -17.0 
90 65 29.1 0 0 -12.1 

110 65 29.1 0 0 -9.4 
130 65 29.1 0 0 -7.7 
150 65 29.1 0 0 -6.5 
90 80 35.8 0 0 -19.7 

110 80 35.8 0 0 -15.1 
130 80 35.8 0 0 -12.2 
150 80 35.8 0 0 -10.2 
170 80 35.8 0 0 -8.8 

 While Table 27 shows the results of the quicker reaction time while driving, the 

longer reaction time of a person to react while driving is 1.5 seconds, which is shown in 

Tale 28. In Table 28, the same scenario is played out as in Tables 26 and 27 just with the 

slower reaction time of 1.5 seconds by a human driver. 

Table 28. Head on impending collision avoidability by braking showing decelerations 

achieved by a human with a 1.5 seconds reaction time. 

Initial Distance Initial Velocities Final Velocities Acceleration Change 
(m) (mph) (m/s) (mph) (m/s) (m/s2) 
10 10 4.5 0 0 -6.1 
20 10 4.5 0 0 -1.5 
30 10 4.5 0 0 -0.9 
40 10 4.5 0 0 -0.6 
50 10 4.5 0 0 -0.5 
20 25 11.2 0 0 -38.6 
30 25 11.2 0 0 -9.4 
40 25 11.2 0 0 -5.4 
50 25 11.2 0 0 -3.8 
60 25 11.2 0 0 -2.9 
30 35 15.6 0 0 -37.5 
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Initial Distance Initial Velocities Final Velocities Acceleration Change 
(m) (mph) (m/s) (mph) (m/s) (m/s2) 
40 35 15.6 0 0 -14.8 
50 35 15.6 0 0 -9.2 
60 35 15.6 0 0 -6.7 
70 35 15.6 0 0 -5.3 
40 45 20.1 0 0 -41.2 
50 45 20.1 0 0 -20.4 
60 45 20.1 0 0 -13.6 
70 45 20.1 0 0 -10.2 
80 45 20.1 0 0 -8.1 
60 55 24.6 0 0 -26.1 
70 55 24.6 0 0 -18.3 
80 55 24.6 0 0 -14.0 
90 55 24.6 0 0 -11.4 

100 55 24.6 0 0 -9.6 
70 65 29.1 0 0 -32.0 
90 65 29.1 0 0 -18.2 

110 65 29.1 0 0 -12.7 
130 65 29.1 0 0 -9.8 
150 65 29.1 0 0 -7.9 
90 80 35.8 0 0 -35.2 

110 80 35.8 0 0 -22.7 
130 80 35.8 0 0 -16.8 
150 80 35.8 0 0 -13.3 
170 80 35.8 0 0 -11.0 

 From these three situations, it is apparent that the ability to brake sooner leads to 

better outcomes for avoiding a crash. This is depicted in Figure 51. Circles represent the 

BICADAS data points at different speeds in Figure 51. The X marker indicates the 0.7 

second reaction times of a human driver, and the dash mark represents the 1.5 second 

reaction times of a human driver as depicted in Figure 51. What is apparent from Figure 

51 and Tables 26 – 28 is that at faster initial velocities the delayed reaction of the human 

driver becomes a greater hindrance to the prevention of a crash. Also, the greater the 
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distance between the vehicles the better chance of braking prior to collision. In turn, 

BICADAS is more capable at preventing front to front collisions than a human driver. 
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Figure 51. Comparison of the changes in acceleration for BICADAS (circles), 0.7s 

Human (x), and 1.5s Human (-). Values less than -9.3 (below the red line) indicate a 

crash, and values less than -4.6 (below the orange line) indicate emergency braking. 
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 The Tables 26 – 28 all represent pure cases of either both vehicles having 

BICADAS (smart-to-smart) or not having BICADAS (dumb-to-dumb). This leads to the 

question of a mixed case scenario of one vehicle with BICADAS and the other without 

BICADAS. For this mixed case BICADAS to non-BICADAS (smart-to-dumb) Table 29 

was created. In Table 29, it is assumed that VLC is used for BICADAS so the driver of the 

non-BICADAS (dumb) vehicle will have a reaction time of 0.7 seconds since they are still 

visually receiving a warning signal. Both vehicles in Table 29 have a max emergency 

deceleration of 9.3 m/s2. 

Table 29. Head on impending collision avoidability by emergency braking showing 

stopping distances for the combined case of BICADAS and non-BICADAS. 

Initial 
Distance Initial Velocities 

Emergency 
Braking 
Distance 

BICADAS 

Emergency 
Braking 
Distance 
Human 
(0.7s) 

Combined 
Braking 
Distance 

Does a 
Crash 
Occur 

(m) (mph) (m/s) (m) (m) (m) (Crash) 
10 10 4.5 1.1 4.2 5.3  
20 10 4.5 1.1 4.2 5.3  
30 10 4.5 1.1 4.2 5.3  
40 10 4.5 1.1 4.2 5.3  
50 10 4.5 1.1 4.2 5.3  
20 25 11.2 6.7 14.5 21.3 Crash 
30 25 11.2 6.7 14.5 21.3  
40 25 11.2 6.7 14.5 21.3  
50 25 11.2 6.7 14.5 21.3  
60 25 11.2 6.7 14.5 21.3  
30 35 15.6 13.2 24.1 37.3 Crash 
40 35 15.6 13.2 24.1 37.3  
50 35 15.6 13.2 24.1 37.3  
60 35 15.6 13.2 24.1 37.3  
70 35 15.6 13.2 24.1 37.3  
40 45 20.1 21.8 35.8 57.6 Crash 
50 45 20.1 21.8 35.8 57.6 Crash 
60 45 20.1 21.8 35.8 57.6  
70 45 20.1 21.8 35.8 57.6  
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Initial 
Distance Initial Velocities 

Emergency 
Braking 
Distance 

BICADAS 

Emergency 
Braking 
Distance 
Human 
(0.7s) 

Combined 
Braking 
Distance 

Does a 
Crash 
Occur 

(m) (mph) (m/s) (m) (m) (m) (Crash) 
80 45 20.1 21.8 35.8 57.6  
60 55 24.6 32.5 49.7 82.2 Crash 
70 55 24.6 32.5 49.7 82.2 Crash 
80 55 24.6 32.5 49.7 82.2 Crash 
90 55 24.6 32.5 49.7 82.2  

100 55 24.6 32.5 49.7 82.2  
70 65 29.1 45.4 65.7 111.1 Crash 
90 65 29.1 45.4 65.7 111.1 Crash 

110 65 29.1 45.4 65.7 111.1 Crash 
130 65 29.1 45.4 65.7 111.1  
150 65 29.1 45.4 65.7 111.1  
90 80 35.8 68.8 93.8 162.6 Crash 

110 80 35.8 68.8 93.8 162.6 Crash 
130 80 35.8 68.8 93.8 162.6 Crash 
150 80 35.8 68.8 93.8 162.6 Crash 
170 80 35.8 68.8 93.8 162.6  

 What is seen in the combined case BICADAS and non-BICADAS (smart-to-dumb) 

is that not all crashes could be avoided, but the human driver is the precipitator of the 

crashes. This can be seen from Table 29 where the emergency braking distance for the 

human is greater than half the initial distance while the emergency braking distance for 

BICADAS is less than half the initial distance. Of the fourteen crashes indicated in Table 

29, seven were the sole inability of the human driver to brake with enough distance to stop 

the vehicle. Thus, the inverse is true that BICADAS prevented seven of the fourteen 

crashes because it was able to begin braking before a human could have reacted. 

7.1.2 Front Bumper to Rear Bumper Collision 

In the case depicted in Figure 49 (front bumper on rear bumper), the follow vehicle 

is moving a speed that will intercept with the lead vehicle should neither vehicle alter their 
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velocities nor change lanes. Should the option to change lanes not be available the follow 

vehicle would need to slowdown. If the deceleration of the follow vehicle is not sufficient 

to avoid a collision on its own the lead vehicle may need to accelerate to aid in the 

prevention of the crash. An optimization for this scenario is discussed in section 7.2. Here 

the physics and dynamics of the problem are analyzed.  

 

Figure 52. Two vehicles facing impending front bumper to rear bumper collision. 

Based on Equations 17 and 19 and the scenario depicted in Figure 52, Table 30 was 

developed. In Table 30, the acceleration needed to match velocities is given as what the 

follow vehicle would have to accelerate/decelerate (negative indicates deceleration) in 

order to not crash into the lead vehicle. Accelerations in orange (≤-4.6 m/s2 & ≥-9.3 m/s2) 

represent able decelerations that are emergency breaking, and accelerations in red (≤-9.3 

m/s2) represent non-achievable decelerations (crash will occur under present conditions). 

In the case of the lead vehicle being non-BICADAS (dumb vehicle) with the follower being 

BICADAS (smart vehicle), only the red conditions would cause a crash should the 

BICADAS not have a lane to move to available. In the opposite case where the BICADAS 

(smart vehicle) is the lead and the non-BICADAS (dumb vehicle) is the follow, the 

BICADAS would recognize the impending crash and accelerate or change lanes to avoid 

being struck by the other vehicle. In the case of both vehicles being BICADAS (smart-to-

smart), the vehicles would perform an optimization as suggested in section 7.2 where the 

lead vehicle would accelerate and the follow would decelerate if the acceleration needed 
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to match velocities in Table 30 was red or orange. In the smart-to-smart case where the 

acceleration needed to match velocities is black (≥ -4.6m/s2) the follow vehicle would just 

decelerate. This ability to optimize the driving speeds of both vehicles involved will lead 

to fewer accidents and possibly better traffic flow as it prevents the need for backups caused 

by emergency braking. 

Table 30. Front to Rear bumper impending collision times and accelerations needed to 

prevent the crash. 

Initial 
Distance 

Lead Vehicle 
Initial Velocity 

Follow Vehicle 
Initial Velocity Intercept Time 

Acceleration 
Needed to 

Match Velocities 
(m) (mph) (m/s) (mph) (m/s) (s) (m/s2) 
10 45 20.1 40 17.9 No Intercept No Change 

Needed 
10 45 20.1 45 20.1 No Intercept No Change 

Needed 
10 45 20.1 50 22.4 4.5 -4.7 
10 45 20.1 55 24.6 2.2 -10.0 
20 45 20.1 40 17.9 No Intercept No Change 

Needed 
20 45 20.1 45 20.1 No Intercept No Change 

Needed 
20 45 20.1 50 22.4 8.9 -2.4 
20 45 20.1 55 24.6 4.5 -5.0 
30 45 20.1 40 17.9 No Intercept No Change 

Needed 
30 45 20.1 45 20.1 No Intercept No Change 

Needed 
30 45 20.1 50 22.4 13.4 -1.6 
30 45 20.1 55 24.6 6.7 -3.3 
10 55 24.6 50 22.4 No Intercept No Change 

Needed 
10 55 24.6 55 24.6 No Intercept No Change 

Needed 
10 55 24.6 60 26.8 4.5 -5.7 
10 55 24.6 65 29.1 2.2 -12.0 
20 55 24.6 50 22.4 No Intercept No Change 

Needed 
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Initial 
Distance 

Lead Vehicle 
Initial Velocity 

Follow Vehicle 
Initial Velocity Intercept Time 

Acceleration 
Needed to 

Match Velocities 
(m) (mph) (m/s) (mph) (m/s) (s) (m/s2) 
20 55 24.6 55 24.6 No Intercept No Change 

Needed 
20 55 24.6 60 26.8 8.9 -2.9 
20 55 24.6 65 29.1 4.5 -6.0 
30 55 24.6 50 22.4 No Intercept No Change 

Needed 
30 55 24.6 55 24.6 No Intercept No Change 

Needed 
30 55 24.6 60 26.8 13.4 -1.9 
30 55 24.6 65 29.1 6.7 -4.0 
10 65 29.1 60 26.8 No Intercept No Change 

Needed 
10 65 29.1 65 29.1 No Intercept No Change 

Needed 
10 65 29.1 70 31.3 4.5 -6.7 
10 65 29.1 75 33.5 2.2 -14.0 
20 65 29.1 60 26.8 No Intercept No Change 

Needed 
20 65 29.1 65 29.1 No Intercept No Change 

Needed 
20 65 29.1 70 31.3 8.9 -3.4 
20 65 29.1 75 33.5 4.5 -7.0 
30 65 29.1 60 26.8 No Intercept No Change 

Needed 
30 65 29.1 65 29.1 No Intercept No Change 

Needed 
30 65 29.1 70 31.3 13.4 -2.2 
30 65 29.1 75 33.5 6.7 -4.7 

 

7.2 Evaluating the Results of the Biologically Inspired Connected Vehicle 

Bargaining Optimization 

Based on the information discussed in Chapter 6, a Java program was written to 

perform an Archimedean optimization for vehicle bargaining (communication between the 
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vehicles for the best course of action for both vehicles to take) based on biological 

inspirations. This code can be found in Appendix C.  

7.2.1 Assumptions for BICADAS Optimization Model 

A number of assumptions and simplifications were used in the development of the 

model of the BICADAS bargaining.  

• One such assumption is that emergency vehicles would not change from 

being emergency vehicles.  

• Another simplification is that the code is setup only for the case of front 

bumper to rear bumper type situations as depicted in Figure 52.  

• The option to change lanes was not included in the present version of the 

model as changing lanes represents an added level of complexity.  

The values selected for the weights of the Archimedean were set to 0.6, 0.3, and 

0.1 for the emergency status, velocities, and accelerations respectively, but other values for 

the weights could have been chosen. The choice was based on the priority of making sure 

emergency vehicles received a priority status, and the velocities did not cause the vehicles 

to crash before worrying what the change in acceleration is practical for the vehicles.  

Also, the code differs from the prescribed plan discussed in Chapter 6 to have the 

vehicles first take the safest action then followed by the optimized action. The present 

model represents what would occur once communication of a smart-to-smart situation is 

established. Thus, this model takes place post the initial immediate movement of the safest 

action. As for finding the best solution an exhaustive search is conducted to find the best 
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new velocities of the two vehicles before comparing them to the nearest and previous 

solutions for the Archimedean optimization. 

Future versions of the model could allow for these vehicles to transition between 

emergency and non-emergency status depending on whether they are responding to an 

emergency. Future versions of the model could also allow for the situation of front bumper 

to front bumper situations as depicted in Figure 50, and the ability to change lanes can be 

added to future versions of the model. 

7.2.2 Analytical Relationships 

Finding what the final velocities are for the two vehicles is dependent on the initial 

velocities and the initial distance between the two vehicles. This follows from Equations 

18 and 19. If the follow vehicle’s acceleration’s change to avoid colliding with the lead 

vehicle is less than 4.6 m/s2 in 3 seconds then the follow vehicle will simply slow down. 

Else the lead vehicles speed will increase as well as decreasing the speed of the follow 

vehicle. This is iterated through until the minimum change to the velocities of both vehicles 

is achieved. This also stipulates that using Equation 16 that the max accelerations of both 

vehicles do not exceed 4.6 m/s2. The solution is then passed to the Archimedean method to 

compare the new solution to the previous solution. In the Archimedean weighted sum 

scheme weights for each of the goals were multiplied to the summation for solving a value, 

see Equation 24, which was saved to compare to the next solution set during the iteration, 

see Equation 25.  

𝑉𝑉�𝑥𝑥𝚥𝚥�� = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝚥𝚥� 𝑖𝑖
3
𝑖𝑖=1       (24) 



 166 

𝑉𝑉�𝑥𝑥𝚥𝚥��  �
=
>
<
�  𝑉𝑉(𝑥𝑥𝑘𝑘���)      (25) 

Should the current value be less than the preceding value the current solution set is 

saved as the best set and the iteration continues where values of subsequent sets are 

compared.  

7.2.2.1 Program Flowcharts 

The program operates several methods that pass and call information from each 

other. The overall flow of the program is depicted in Figure 53. Figure 54 depicts the 

inheritance of each of the methods and shows what is passed between the methods. 

 

Figure 53. Program flowchart for finding the best solution. 

Figure 54 shows how the Java code for the BICADAS bargaining optimization, 

found in Appendix C, methods interact with each other for what is passed between them. 

Design Parameters

Calculate Constraints

Calculate Goals

Calculate Objective FunctionsCompare Objective Functions

Save Best Objective function

Iterate to End of Parameter 
maximums
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In the Java code, the Main method calls the Archimedean, AccelerationValue, and Velocity 

methods. The Main method passes the velocities and the distance to the Velocity method 

while it receives back an array of new velocities. The main method then passes velocity 

values to the AccelerationValue method and is returned the numerical acceleration value 

for the velocities given. Finally, the Main method calls the Archimedean method and sends 

it weights and solution sets of emergency statuses, velocities, and accelerations to compare 

to determine if the new solution is better than the previous best solution. 

 

Figure 54. Flow chart of the Java methods and what they pass between them. 
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7.2.3 Results and Verification 

Running the BICADAS bargaining optimization code found in Appendix C, the 

results for a scenario where both vehicles are of the same emergency level was run for the 

lead vehicle having varying initial velocities between 35 mph (15.6 m/s) and 65 mph (29.1 

m/s) and varying initial distances ranging from 10 meters to 40 meters between the two 

vehicles. The follow vehicle’s velocity was held constant at 80 mph (35.8 m/s). Both 

vehicles are assumed to have BICADAS and are able to communicate with each other. 

From this scenario Table 31 is derived. 

Table 31. Optimization of Velocities for the 2 BICADAS vehicles for front to rear bumper 

collision. 
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(m) (mph) (m/s) (mph) (m/s) (mph) (m/s) (m/s2) (mph) (m/s) (m/s2) 
10 35 15.6 80 35.8 55 24.6 4.5 60 26.7 4.5 
20 35 15.6 80 35.8 51 22.7 3.5 64 28.7 3.5 
30 35 15.6 80 35.8 48 21.6 3 67 29.8 3.0 
40 35 15.6 80 35.8 44 19.6 2 71 31.8 2.0 
10 45 20.1 80 35.8 61 27.1 3.5 64 28.7 3.5 
20 45 20.1 80 35.8 56 25.1 2.5 69 30.8 2.5 
30 45 20.1 80 35.8 52 23.1 1.5 73 32.8 1.5 
40 45 20.1 80 35.8 49 22.1 1 76 33.8 1.0 
10 55 24.6 80 35.8 64 28.6 2 71 31.7 2.0 
20 55 24.6 80 35.8 62 27.6 1.5 73 32.8 1.5 
30 55 24.6 80 35.8 57 25.6 0.5 78 34.8 0.5 
40 55 24.6 80 35.8 55 24.6 0 80 35.8 0.0 
10 65 29.1 80 35.8 65 29.1 0 71 31.7 2.0 
20 65 29.1 80 35.8 65 29.1 0 78 34.8 0.5 
30 65 29.1 80 35.8 65 29.1 0 80 35.8 0.0 
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(m) (mph) (m/s) (mph) (m/s) (mph) (m/s) (m/s2) (mph) (m/s) (m/s2) 
40 65 29.1 80 35.8 65 29.1 0 80 35.8 0 

One interesting thing that is observable from Table 31 (highlighted in yellow) is 

sometimes neither vehicle changes their respective velocity. This is because for the initial 

set distance the time needed for the two vehicles’ paths to intersect is greater than 3 

seconds. Recall that 3 seconds is the minimum time needed for a human driver to keep 

proper spacing to prevent a crash. To validate this Table 30’s initial values were run 

through the BICADAS bargaining optimization program as shown in Table 32.  

Table 32. Optimization of Velocities for the 2 BICADAS vehicles using initial values 

from Table 30. 
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(m) (mph) (m/s) (mph) (m/s) (mph) (m/s) (m/s2) (mph) (m/s) (m/s2) 
10 45 20.1 40 17.9 45 20.1 0.0 40 17.9 0.0 
10 45 20.1 45 20.1 45 20.1 0.0 45 20.1 0.0 
10 45 20.1 50 22.4 45 20.1 0.0 50 22.4 0.0 
10 45 20.1 55 24.6 45 20.1 0.0 51 22.6 1.0 
20 45 20.1 40 17.9 45 20.1 0.0 40 17.9 0.0 
20 45 20.1 45 20.1 45 20.1 0.0 45 20.1 0.0 
20 45 20.1 50 22.4 45 20.1 0.0 50 22.4 0.0 
20 45 20.1 55 24.6 45 20.1 0.0 55 24.6 0.0 
30 45 20.1 40 17.9 45 20.1 0.0 40 17.9 0.0 
30 45 20.1 45 20.1 45 20.1 0.0 45 20.1 0.0 
30 45 20.1 50 22.4 45 20.1 0.0 50 22.4 0.0 
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(m) (mph) (m/s) (mph) (m/s) (mph) (m/s) (m/s2) (mph) (m/s) (m/s2) 
30 45 20.1 55 24.6 45 20.1 0.0 55 24.6 0.0 
10 55 24.6 50 22.4 55 24.6 0.0 50 22.4 0.0 
10 55 24.6 55 24.6 55 24.6 0.0 55 24.6 0.0 
10 55 24.6 60 26.8 55 24.6 0.0 60 26.8 0.0 
10 55 24.6 65 29.1 55 24.6 0.0 61 27.0 1.0 
20 55 24.6 50 22.4 55 24.6 0.0 50 22.4 0.0 
20 55 24.6 55 24.6 55 24.6 0.0 55 24.6 0.0 
20 55 24.6 60 26.8 55 24.6 0.0 60 26.8 0.0 
20 55 24.6 65 29.1 55 24.6 0.0 65 29.1 0.0 
30 55 24.6 50 22.4 55 24.6 0.0 50 22.4 0.0 
30 55 24.6 55 24.6 55 24.6 0.0 55 24.6 0.0 
30 55 24.6 60 26.8 55 24.6 0.0 60 26.8 0.0 
30 55 24.6 65 29.1 55 24.6 0.0 65 29.1 0.0 
10 65 29.1 60 26.8 65 29.1 0.0 60 26.8 0.0 
10 65 29.1 65 29.1 65 29.1 0.0 65 29.1 0.0 
10 65 29.1 70 31.3 65 29.1 0.0 70 31.3 0.0 
10 65 29.1 75 33.5 65 29.1 0.0 71 31.5 1.0 
20 65 29.1 60 26.8 65 29.1 0.0 60 26.8 0.0 
20 65 29.1 65 29.1 65 29.1 0.0 65 29.1 0.0 
20 65 29.1 70 31.3 65 29.1 0.0 70 31.3 0.0 
20 65 29.1 75 33.5 65 29.1 0.0 75 33.5 0.0 
30 65 29.1 60 26.8 65 29.1 0.0 60 26.8 0.0 
30 65 29.1 65 29.1 65 29.1 0.0 65 29.1 0.0 
30 65 29.1 70 31.3 65 29.1 0.0 70 31.3 0.0 
30 65 29.1 75 33.5 65 29.1 0.0 75 33.5 0.0 

In comparing Table 32 to Table 30, it becomes apparent that only in the cases where 

the time for the vehicles to intercept each other (crash), less than 3 seconds causes the 

optimization program take control, highlighted in yellow. This stems from the minimum 

safe follow distance being 3 seconds for a human to react to avoid a crash. Hence, once the 
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3 seconds of spacing is violated the program comes into effect to guide the vehicles to 

avoid the crash.  

For validating the solution method, the scenario of no emergency vehicles with the 

lead vehicle going 45 mph (20.1 m/s) and the follow vehicle going 80 mph (35.8 m/s) with 

an initial spacing of 10 meters was selected. The initial velocities were plotted along with 

each step to the final solution, and then one step beyond the found solution was plotted as 

shown in Figure 55. The Archimedean values for each step were labelled on the scatter plot 

of solutions. It is important to note when viewing Figure 55 that the step just prior to the 

solution still has the vehicles crashing, and it is therefore not a valid solution point. Notice 

the point labelled “Final Solution” has an Archimedean value less than the point labelled 

“One Step Beyond Solution”; therefore, the point labelled “Final Solution” is the best 

solution for the vehicle velocities as this Archimedean optimization is setup. Thus, the 

optimal solution is for the lead vehicle to increase its velocity to 61 mph and for the follow 

vehicle to decrease its velocity to 64 mph in order to prevent a crash so long as neither 

vehicle can change lanes. 
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Figure 55. Solutions for vehicle velocities for the initial velocities of 45mph and 80 mph. 

The same scenario as used in Figure 55, front bumper to rear bumper with lead 

vehicle initial velocity of 45 mph and follow vehicle velocity of 80 mph, with varying 

Archimedean weights. The weights for the emergency vehicle status, velocity, and 

acceleration were varied from 0 to 1 for calculating the Archimedean values to determine 

the Pareto frontier as shown in Figure 56. Finding the Pareto frontier as shown in Figure 

56 allows for seeing if any trade-offs among the weights for the Archimedean would 

benefit in finding other feasible solutions. As the plot of Figure 56 shows that there is a flat 

surface, so there is no benefit from varying the weights to the Archimedean as structured 

in the Java code. 
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Figure 56. Pareto frontier for varying weights to the Archimedean optimization for 

initial velocities of 45mph and 80 mph. 

7.3 Summary 

The crucial aspect of this research is to see if biological principles can be applied to 

vehicle ADAS to reduce the occurrence of crashes. As shown in repeatably in Tables 26 – 

30 and in the Java optimization, by applying biological principles to ADAS in the proposed 

form of BICADAS crashes are able to be prevented with great success over even the best 

human driver reactions. This holds true for the two main fatal crash occurrence types of 
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front bumper to front bumper and front bumper to rear bumper. This leads to the discussion 

in Chapter 8 about whether BICADAS should succeed ADAS.  
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CHAPTER 8. COMPARISON OF THE COMPETING PATHS 

FOR FUTUTRE ADAS DEVELOPMENT 

8.1 Comparison of BICADAS to ADAS 

Comparing the present state of ADAS technology with the proposed BICADAS is 

no simple task. Present ADAS is affected by many factors and not all are easily 

quantifiable. For example dealing with the human factor involved with present ADAS is 

hard to quantify as discussed in Chapter 4. Looking at past driving history and 

demographics are some ways to quantify the human factor, but the in-the-moment actions 

are much more difficult to quantify. For the sake of comparison, the human factor has been 

simplified to be the standard reaction time of 0.7 seconds to 1.5 seconds. The lower reaction 

time of 0.7 seconds is utilized for the cases where ADAS simply provides a warning to the 

driver. 

 BICADAS on the other hand removes the human factor after the 3 second time 

spacing for intervention is reached. This is shown in Tables 26 – 30 and Figure 51 in 

Chapter 7. For example, take Table 26 and Table 27 and combine them as done in Table 

33. It is observable that for these cases of front bumper on front bumper crashes, the 

BICADAS prevents 7 of the 14 crashes (shown in red) occurring for the human driver. The 

reason the 0.7 second reaction time is used instead of the 1.5 seconds reaction time is due 

to the idea that the vehicle has ADAS that is providing a warning to the driver.  
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Table 33. Combination of Tables 26 and 27 for comparing the accelerations of 

BICADAS and humans. Orange highlights are emergency braking, and red highlights 

are crashes. 

Initial Distance Initial Velocities BICADAS 
Acceleration Change 

0.7 Human 
Acceleration Change 

(m) (mph) (m/s) (m/s2) (m/s2) 
10 10 4.5 -2.0 -2.9 
20 10 4.5 -1.0 -1.2 
30 10 4.5 -0.7 -0.7 
40 10 4.5 -0.5 -0.5 
50 10 4.5 -0.4 -0.4 
20 25 11.2 -6.2 -10.3 
30 25 11.2 -4.2 -5.6 
40 25 11.2 -3.1 -3.9 
50 25 11.2 -2.5 -3.0 
60 25 11.2 -2.1 -2.4 
30 35 15.6 -8.2 -12.9 
40 35 15.6 -6.1 -8.4 
50 35 15.6 -4.9 -6.3 
60 35 15.6 -4.1 -5.0 
70 35 15.6 -3.5 -4.1 
40 45 20.1 -10.1 -15.6 
50 45 20.1 -8.1 -11.3 
60 45 20.1 -6.7 -8.8 
70 45 20.1 -5.8 -7.2 
80 45 20.1 -5.1 -6.1 
60 55 24.6 -10.1 -14.1 
70 55 24.6 -8.6 -11.5 
80 55 24.6 -7.6 -9.6 
90 55 24.6 -6.7 -8.3 

100 55 24.6 -6.0 -7.3 
70 65 29.1 -12.1 -17.0 
90 65 29.1 -9.4 -12.1 

110 65 29.1 -7.7 -9.4 
130 65 29.1 -6.5 -7.7 
150 65 29.1 -5.6 -6.5 
90 80 35.8 -14.2 -19.7 

110 80 35.8 -11.6 -15.1 
130 80 35.8 -9.8 -12.2 
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Initial Distance Initial Velocities BICADAS 
Acceleration Change 

0.7 Human 
Acceleration Change 

(m) (mph) (m/s) (m/s2) (m/s2) 
150 80 35.8 -8.5 -10.2 
170 80 35.8 -7.5 -8.8 

The same can be seen in the front bumper to rear bumper case as shown by Table 

34. In Table 34, the BICADAS of two vehicles working together is able to prevent all 3 of 

the crashes (shown in red) the human driver with ADAS alone would have experienced. 

BICADAS was also able to reduce the need for emergency braking (shown in orange).  

Table 34. Comparing accelerations of two vehicles with BICADAS versus present ADAS. 

Orange highlights are emergency braking, and red highlights are crashes. 

Initial 
Distance 

Lead Vehicle 
Initial Velocity 

Follow vehicle 
Initial Velocity 

2 BICADAS 
Acceleration 

ADAS 
Acceleration  

(m) (mph) (m/s) (m/s2) (m/s) (m/s2) (m/s2) 
10 45 20.1 40 17.9 No Change Needed No Change 

Needed 
10 45 20.1 45 20.1 No Change Needed No Change 

Needed 
10 45 20.1 50 22.4 -2.9 -4.7 
10 45 20.1 55 24.6 -5.0 -10.0 
20 45 20.1 40 17.9 No Change Needed No Change 

Needed 
20 45 20.1 45 20.1 No Change Needed No Change 

Needed 
20 45 20.1 50 22.4 -1.7 -2.4 
20 45 20.1 55 24.6 -2.5 -5.0 
30 45 20.1 40 17.9 No Change Needed No Change 

Needed 
30 45 20.1 45 20.1 No Change Needed No Change 

Needed 
30 45 20.1 50 22.4 -0.8 -1.6 
30 45 20.1 55 24.6 -1.7 -3.3 
10 55 24.6 50 22.4 No Change Needed No Change 

Needed 
10 55 24.6 55 24.6 No Change Needed No Change 

Needed 
10 55 24.6 60 26.8 -2.9 -5.7 
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Initial 
Distance 

Lead Vehicle 
Initial Velocity 

Follow vehicle 
Initial Velocity 

2 BICADAS 
Acceleration 

ADAS 
Acceleration  

(m) (mph) (m/s) (m/s2) (m/s) (m/s2) (m/s2) 
10 55 24.6 65 29.1 -6.0 -12.0 
20 55 24.6 50 22.4 No Change Needed No Change 

Needed 
20 55 24.6 55 24.6 No Change Needed No Change 

Needed 
20 55 24.6 60 26.8 -1.5 -2.9 
20 55 24.6 65 29.1 -3.0 -6.0 
30 55 24.6 50 22.4 No Change Needed No Change 

Needed 
30 55 24.6 55 24.6 No Change Needed No Change 

Needed 
30 55 24.6 60 26.8 -1.0 -1.9 
30 55 24.6 65 29.1 -2.0 -4.0 
10 65 29.1 60 26.8 No Change Needed No Change 

Needed 
10 65 29.1 65 29.1 No Change Needed No Change 

Needed 
10 65 29.1 70 31.3 -3.4 -6.7 
10 65 29.1 75 33.5 -7.0 -14.0 
20 65 29.1 60 26.8 No Change Needed No Change 

Needed 
20 65 29.1 65 29.1 No Change Needed No Change 

Needed 
20 65 29.1 70 31.3 -1.7 -3.4 
20 65 29.1 75 33.5 -3.5 -7.0 
30 65 29.1 60 26.8 No Change Needed No Change 

Needed 
30 65 29.1 65 29.1 No Change Needed No Change 

Needed 
30 65 29.1 70 31.3 -1.1 -2.2 
30 65 29.1 75 33.5 -2.4 -4.7 

As for how the use of 0.7 seconds applies to comparing BICADAS to current 

ADAS, only a warning to the human driver is given at the lowest level of intervention from 

current ADAS and at the highest level the ADAS takes control of the vehicle. In neither 

case is the vehicle communicating with other vehicles. In cases where BICADAS is only 

present in one of the two vehicles, the BICADAS would function similar to the highest 
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levels of current ADAS. In cases where both vehicle have BICADAS, the added bonus of 

communication between the vehicle leads to more advantageous outcomes. Having 

vehicles connected as is the case with BICADAS may lead to other benefits, which will be 

discussed in section 8.3. 

8.2 Investment of ADAS and BICADAS 

As discussed previously in Chapters 1 and 4, there have been significant 

investments made into the development of ADAS and supporting infrastructure. More than 

$29.9 billion has been invested by companies into ADAS technology research with 

averages each year ranging from $0.6 billion in 2010 to $5.6 billion in 2019 (Daniel 

Holland-Letz 2019). The total investment is expected to increase to over $91.8 billion by 

2025 (Markets 2020). As BICADAS is a continuation of ADAS development it would be 

included in that growth to $91.8 billion.  

8.2.1 Technology Upgrades 

ADAS technologies in vehicles differ from one manufacturer to the next and the 

technology offerings will differ even among a vehicle model because of the vehicle’s trim 

level (Automotive 2019). The differences can be as much as a few thousand dollars 

between a vehicle with the bare minimum ADAS required by law to a vehicle with all the 

latest ADAS technologies available. Because of the varying outfitting of vehicles with 

respect to ADAS, different cost for BICADAS upgrades to existing vehicles would exist. 

Vehicles that already have ADAS with many of the most recent technologies such as 

adaptive cruise control with stop and go technology would likely only require a software 

upgrade to have BICADAS, assuming visual light communication (VLC) is used for 
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connectivity. If one of the other connectivity protocols is used other costs such as hardware 

installation would be needed as well. Other vehicles with older ADAS technologies would 

likely require the addition of wiring, possibly sensors, and computer chips in addition to 

the software to upgrade them to BICADAS. This in turn would cost a few hundred dollars 

to install these upgrades to the older ADAS equipped vehicles as shown in Table 35. The 

cost for the software upgrade in Table 35 was based on the software upgrade for Ford’s 

navigation system and wiring (Ford 2020). The costs for the other hardware listed in Table 

35 (control boards, cameras, and adaptive cruise control with stop and go) and wiring was 

determined based on searches from Amazon.com.  

Table 35. Technology level upgrade cost to BICADAS from present technology level. 

Technology Level Upgrade to BICADAS Cost ($) 
BICADAS None 0 

High-end ADAS Software, Some Wiring 160 

Low-end ADAS Software, Extensive Wiring, Control Boards, Camera Array, 
Adaptive Cruise Control w/ Stop & Go 490 

No ADAS Software, Extensive Wiring, Control Boards, Camera Array, 
Adaptive Cruise Control w/ Stop & Go 490 

8.2.2 Sensor Repair Costs 

While repairs play a lesser role in the cost outcome for accidents than injury cost, 

they do still contribute to the overall costs as discussed in Chapter 5. When these systems 

are affected by a crash they at a bare minimum need to be recalibrated. Recalibration alone 

can cost $250-$300 USD as shown in Table 22, which is reproduced below in Table 36. 

By BICADAS reducing the occurrence of even more crashes than present ADAS the 

consumer will save on the cost of repairs. By preventing the front bumper crashes, 

BICADAS could save as much as $4300, and in rear bumper crashes could save as much 

as $4550 by having BICADAS as shown in Table 36. 
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Table 36. Cost (USD) of repairing vehicle components (Association 2018, Preston 2020). 

Part Min Max 
Front Bumper 1450 4300 

Headlights and Taillights 300 1750 
Windshield 1750 3650 

Rear Bumper 1950 4550 
Side Mirror 1250 2750 

8.3 Other Potential Benefits from BICADAS 

Other potential benefits from BICADAS include faster commute times, better fuel 

economy, less traffic congestion, and less need for new vehicles to replace those in 

accidents, as will be discussed below.  A number of these benefits are similar to the 

sustainability benefits of ADAS discussed in Chapter 5.  

8.3.1 Environmental Impact 

By reducing the number of crashes with significant damage the amount of CO2 is produced 

as a byproduct of the manufacturing along with reductions in other material usage such as 

copper, zinc, steel, aluminum, and plastics. As shown in Figure 34, reproduced above as 

Figure 57, the amount of CO2 and H2O saved on a per vehicle basis, assumes average 

vehicle weighing EPA class 2 minimum of 6,001lbs (2722kg), is rather significant 

(Argonne National Laboratory 2020). Should BICADAS reduce fatal crashes by the 

idealized 94% (approximately 47,000 vehicles) that would lead to a reduction in 138 

million kg of CO2 and 514,000 m3 of water saved annually. A 30% (15,000 vehicles) 

reduction in fatal crashes due to BICADAS would save 44 million kg of CO2 and 164,000 

m3 of water. To provide perspective those are 205.6 and 65.6 Olympic size swimming 
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pools of water respectively. Based on the findings of (Fish and Bras 2021) there appears to 

be a real-world reduction of fatal crashes for vehicles with effective ADAS between 70% 

and 93%, and the adoption of BICADAS could potentially push even the less effective 

ADAS equpped vehicles up to the same percentage reductions in crashes. 

 

Figure 57. CO2 and H2O savings of preventing crashes of pickup trucks. 

8.3.2 Fuel Economy 

One of the advantages that comes from traffic not needing to slow down due to 

other drivers choosing to drive at a leisurely speed is the lower congestion on the roads. By 

not having to slow down like their ADAS counter parts the BICADAS equipped vehicles 

(in a smart to smart scenario) avoid the energy expenditure that stems from the changes in 

speed. For example when you are driving your vehicle on the freeway and using cruise 

control to maintain a constant speed you will get better fuel economy than if you were to 

be constantly speeding up and slowing down to keep pace with traffic. Because BICADAS 
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(in a smart to smart scenario) mitigates the compression of traffic spacing, the vehicles are 

able to keep moving at reasonable speeds which provides faster commute times and better 

fuel economy. 

8.4 Summary 

There exist advantages of BICADAS over present ADAS. BICADAS being able to 

intercede in situations similar to who adaptive cruise control with stop and go technology 

works on the freeway, but BICADAS is able to do this function for all driving situations. 

This is just one of the advantages BICADAS has over ADAS. Along with potentially 

improved travel times and less frustration due to traffic congestions for drivers for the smart 

to smart interaction scenario, BICADAS can contribute to environmental sustainability at 

a level at least as good as the impacts of ADAS as discussed in section 3. Based on the 

cases tested in Table 34, BICADAS for two vehicles was able to prevent all 36 crashes 

compared to ADAS preventing only 33 crashes. This is in addition to only needing to 

emergency brake 3 times for BICADAS compared to 10 times for ADAS, to include the 3 

crashes. While ADAS, found to be effective for FSLDPTs, was able to reduce fatal crashes 

between 70% and 94%, BICADAS could potentially push all equipped vehicles to the 

idealized 94% reduction in crashes for both fatal and non-fatal. These positive outcomes 

are produced with technology with a relatively low cost required to upgrade existing ADAS 

vehicles to be BICADAS enabled. It is thus natural that BICADAS should be the 

subsequent phase in the advancement of ADAS technology. 
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CHAPTER 9. SUMMARY AND FUTURE WORK 

9.1 Summary of Work 

The research question (RQ) and goals (RGs) were answered through the completion 

the following research tasks (RT). It is important to recall that the data utilized in this work 

comes from the NHTSA FARS database, which is based solely on fatal accident data. 

9.1.1 Research Tasks (RT) Completed 

RT1. Real-world accident data was collected thorough literature reviews, data 

mining, financial reports, and internet searches. See Chapter 2 sections 1, 5, and 

6 and Chapter 4 section 1. 

RT2. Collected information on biological principles for comparison, with thorough 

literature reviews and internet searches. See Chapter 2 sections 2 and 3 and 

Chapter 6. 

RT3.  Analyzed the datasets of real-world data using heuristics and stochastic analysis 

with a focus on FSLDPTs. See Chapter 4. 

a. Compared the heuristics for the FSLDPTs among all seven automobile 

manufacturers. See Chapter 4 sections 2 and 3. 

b. Broke out the FSLDPTs with ADAS from the rest of the FSLDPTs. 

i. Identified a common grouping for FSLDPTs with ADAS for a 

relative comparison among the brands. See Chapter 2 section 6 

and Chapter 4 section 1. 
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ii. Identified factors used to assess the performance of ADAS. See 

Chapter 4 section 1. 

c. Performed stochastic analysis to determine statistical significance of 

FSLDPT with ADAS performance. See Chapter 4 sections 2 and 3. 

d. Performed stochastic analysis to determine contributing factors 

statistical significance of FSLDPT with ADAS performance. See 

Chapter 4 sections 2 and 3. 

RT4. Analyzed the economic metrics associated with cost of an accident. 

a. Optimized impact location selection using repair cost, injury cost, and 

injury severity to determine the best and the worst vehicle locations to 

be impacted. See Chapter 5. 

RT5. Investigated whether it is better for automobile manufacturers to continue the 

present trajectory of ADAS development or explore V2V based on biological 

inspiration. See Chapter 8. 

a. Used existing accident data to develop a model for future accidents 

based on current trends in accident/injury reduction. See Chapter 5 and 

Chapter 8. 

b. Using biological inspired principles as a benchmark, a model was 

developed for vehicles using present ADAS accident data in a V2V 

setup (BICADAS). See Chapters 6, 7 and 8. 

9.1.2 Detailed Work Completed 
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RT1: A detailed and exhaustive set of accident automotive data was a vital component for 

this research. There existed multiple avenues for ascertaining this data following a 

thorough literature reviews, data mining, financial reporting, and internet searches. 

Literature included (but were not limited to) consumer reports, government reports, traffic 

journals, accident journals, consulting firm reports, insurance reports, and technical 

journals. Data mining was available through insurance agencies, NHTSA, IIHS, state 

government accident reports. Financial reporting was obtained through SEC annual reports 

such as company 10-K and 20-F reports. Internet searches included (but not limited to) 

sales brochures and traffic safety factsheets. As for obtaining real-world complete and 

detailed accident data there exists no such data set. Partial sets are available through 

insurance agencies; however, these are proprietary data sets and due to privacy laws were 

next to impossible to obtain. Each state produces limited detailed fatal accident reports that 

are inconsistent from state to state making unification of these independent incongruent 

datasets unrealistic. By limiting the real-world data to a complete and detailed set of 

accidents resulting in one or more fatalities, a useful and detailed data set was obtained 

from NHTSA known as FARS. NHTSA also produces a speculative dataset that 

generalizes non-fatal accidents known as the Crash Report Sampling System (CRSS). The 

NHTSA FARS data was organized, sorted, queried, and analyzed in RT3. 

RT2: Self organized movement in aggregations of organisms (i.e. swarms, flocks, schools) 

is a common occurrence in nature. A thorough literature review of academic journals was 

conducted. The patterns and trends from literature were combined with the data analyzed 

from RT3 to construct the BICADAS model for RT5’s biologically inspired V2V (vehicle-

to-vehicle) self-organization. While there are V2V models that have been developed, none 
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of those models have looked at incorporating biologically inspired principles. Some 

existing research for V2X (vehicle-to-infrastructure/vehicle) points out the limitations of 

data transfer between sender and receiver (Nadeem, Dashtinezhad et al. 2004). Other 

research in V2X deals with how the vehicles interact to avoid accidents based on how the 

research perceives a system should work (Yang, Liu et al. 2004, Kunze, Haberstroh et al. 

2011, Hafner, Cunningham et al. 2013, Yuan, Tasik et al. 2020). This work used biological 

inspiration for the methodology of how V2V should interact, which has not been applied 

previously by other researchers.  

RT3: The data assembled (NHTSA FARS) and organized as part of RT1 was filtered for 

the seven FSLDPTs. The data was then graphed to visualize the factors in the dataset. From 

the factors identify those that can be used to compare the accidents were Level of Injury 

and Damage Severity. Comparing the two factors identified for comparing accidents to 

select one factor (Level of Injury) was used for all comparisons. The seven brands of 

FSLDPTs are normalized by dividing the total accidents by the number of units sold in the 

corresponding year found using financial reports and internet searches. Then FSLDPT 

brands were compared after normalization using the factors from the dataset. The 

FSLDPTs equipped with ADAS were then be broken out using identifying factors (trim 

level, vehicle model year, cabin size, and engine size) from the dataset. These factors were 

identified through the use of sales brochures. With the ADAS equipped FSLDPTs 

identified, statistical analysis such as ANOVA tests were performed to identify factors that 

influence the performance of ADAS FSLDPTs.  

RT4: The only way automotive manufacturers will change how they are deploying ADAS 

technology is if market forces shift their interests. Economics of accidents is one of such 
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market forces that can have that effect. Economic and accident data obtained in RT1 was 

used to create a model that was optimized to indicate where the most expensive and severe 

impacts occur for an accident. It was used to determine future deployment needs and 

designs of ADAS technologies. It also helped distinguish between ADAS for safety and 

ADAS for convenience. By using a single dataset for pricing of components (Automotive 

2019), even if the quoted values for the components was inaccurate the relativism of the 

pricing used in the model was consistent. The results from the optimization support RT5a 

for reasoning on what needs continued improvement and investment and RT5b for what 

issue doe the biological inspiration need to address most predominately.  

RT5: The two directions (current ADAS and BICADAS) that could be taken for the next 

stage of ADAS development was investigated. RT5a was to perform a regression analysis 

based on the trends in investment, pricing, accident occurrence, and injury severity. RT5b 

involved developing a model for CV using principles inspired from biology. The patterns 

from ants, birds, cockroaches, dolphins, and fish were strong influences on the model. 

Their principles were used to examine how to pass information between the CVs and for 

recognizing which vehicles should communicate. These two tasks’ resultant models were 

then be compared for accident occurrence, and associated costs.  

9.2 Contributions 

This dissertation advances the work being done in ADAS technology development 

through modeling and simulation grounded in quantified real-world data. Even though 

limited real-world data has been used to in models and simulations of motor vehicle 

accidents, the incorporation of biologically inspired self-organization for cohort movement 
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has not been proposed or evaluated for efficacy of mitigating automotive accidents and 

injuries.  

The outcomes of this research are: 

(i) The validation of the central hypothesis that connected vehicles inspired by 

biological principles can produce better outcomes for collision avoidance than non-

connected vehicles. 

(ii) A biologically inspired connected vehicle model validated through simulations that 

combines the human engineered system and biological solutions. The biologically 

inspired model (BICADAS) provides guidance for the connection of vehicles 

which is suitable for the industrial sector to develop derivatives for V2V networks. 

(iii)The first study of the effectiveness of ADAS in FSLDPTs. This work provides 

insight to a large percentage (18%) of registered vehicles on the roads in the United 

States that has been neglected in past studies of ADAS because of its exclusivity of 

being neither a sedan nor a freight truck.  

(iv) Identifying which ADAS technologies were effective at reducing accidents and 

reducing the severity of injuries contrasted to those which exist for driver 

convenience was presented as conferences. This translates to auto-manufacturers 

being able to stratify which technologies are worth continued improvement, which 

are satisfactory as is, or which could be depreciated while still providing the same 

level of aptitude. This contribution has informed the research community where to 

focus their efforts to provide the largest return on investment.  

(v) Provides an insight into the economics of ADAS regarding costing and pricing. By 

evaluating the cost to the consumer for the level of additional safety provided by 
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ADAS technologies offered by a particular auto-manufacturer relative to other 

auto-manufacturers, the consumer will be better equipped to make a conscientious 

decision when purchasing a vehicle. Auto-manufacturers have gained knowledge 

of how much to invest to see improvement in vehicle safety. 

9.3 Future Work 

This dissertation has laid the foundation for the future development of ADAS and 

vehicle autonomy. Reaction times for BICADAS physics estimations should include for 

sensor processing and computation time. A cursory check was done to the physics 

calculations in this work and found that should computation time for BICADAS take 0.1 

second, an over estimate of time for cameras to process data and for data to be transferred 

between vehicles, there would be no change in occurrences of emergency braking or 

crashes as were previously computed. In the case of visual sensors such as cameras, the 

rate of frames per second should be included in the reaction time of BICADAS. This work 

did include a factor of safety of 1.5 for BICADAS Java code, but future work could fine 

tune that to be more precise to the available technology rather than giving a blanket 1 

second of travel distance buffer for the reaction of BICADAS. The next stage following 

this work would be to expand the Java bargaining code to be able to address more scenarios. 

Then physical test of the BICADAS technology can be done to prove out their 

effectiveness. 

9.3.1 Expand the Java Bargaining Code to include 

The Java code presented in chapters 6 and 7 is rudimentary. It was designed to 

address one subset of the smart-smart scenario (front to rear). This particular scenario was 
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targeted in the Java code due to its overwhelming occurrence in real-world crashes. More 

work on the bargaining code needs to be done to include other scenarios such as the 

addition front to front case in the smart-smart scenario as well as the inclusion of the other 

communication scenarios (smart-semi smart, smart-dumb). 

Other features should also be included in the updates to the Java code. The ability 

to have emergency vehicles change to non-emergency status will be useful for maintaining 

a smooth traffic flow. More importantly having the code recognize that changing lanes can 

be optimal in certain cases would likely lead to BICADAS avoiding more crashes and 

reduce the need to emergency brake even further. By recognizing that vehicles have 

varying EPA class weights in the Java code, accelerations can be tailored to the specific 

vehicles involved. This would improve the precision of targeting velocity changes of each 

vehicle involved.  

A higher-level systems analysis should be conducted to see how BICADAS 

performs when multiple vehicle interactions occur. This would validate BICADAS as 

being able to improve travel flow and prevent traffic congestion. It would also likely show 

tertiary benefits of faster travel times and better efficiencies of fuel consumption.  

9.3.2 Physical Testing of BICADAS 

Once the bargaining code has been updated, building physical testing apparats for 

BICADAS can be done. A vision system to identify different VLC signals for BICADAS 

would need to be designed and programmed to feed information into the bargaining code. 

Once that was established, small-scale testing of BICADAS could be initially done using 

remote-control vehicles in a lab setting. This would in turn would potentially lead to 
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advances in swarm robotics as the automotive problem is more complex than what is 

currently being done in swarm robotics due the greater complexity of the problem that was 

discussed in Chapter 2 section 4. Then BICADAS would be ready to implement in real 

vehicles on a closed course at first. Eventually, expanding to highways and other roads. 

9.4 In Closing 

This dissertation proposes the use of biological principles as an inspiration for the 

development of connected vehicles (CV). The approach proposed in this work imitates 

communication and navigation principles found across the animal kingdom. These 

principles include things such as aposematism, bargaining, and Leuckart’s law. This 

dissertation uses a comprehensive and exhaustive dataset, qualitative and quantitative 

engineering analyses to achieve the proposed research objectives. The viability of this 

research has been demonstrated through its results and previous research. Fish and Bras 

observed optimized impact zones on vehicles (Fish & Bras 2021), and this research 

targeted impact zones needing improvement for the design of BICADAS. The analyses 

warrant the expanded implementation of biological principles into the automotive industry. 

Using biological inspiration fewer crashes can be achieved with the additional bonus of 

lowering associated costs of technology and crashes. Ultimately, this work will save lives 

through the adoption of biological principles for the automotive industry.  



 193 

APPENDIX A. MAPS OF CRASHES 

 

Figure A58: Map of 2017 Ford Accidents based on injury severity in the FSLDPT. 
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Figure A59: Map of 2018 Ford Accidents based on injury severity in the FSLDPT. 
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Figure A60: Map of 2016 GMC accidents based on injury severity in the FSLDPT. 
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Figure A61: Map of 2016 Chevrolet accidents based on injury severity in the FSLDPT. 
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Figure A62: Map of 2016 RAM accidents based on injury severity in the FSLDPT. 
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Figure A63: Map of 2016 Toyota accidents based on injury severity in the FSLDPT. 
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Figure A64: Map of 2016 Honda accidents based on injury severity in the FSLDPT. 
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Figure A65: Map of 2016 Nissan accidents based on injury severity in the FSLDPT. 
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Figure A66: Map of 2017 GMC accidents based on injury severity in the FSLDPT. 
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Figure A67: Map of 2017 Chevrolet accidents based on injury severity in the FSLDPT. 
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Figure A68: Map of 2017 RAM accidents based on injury severity in the FSLDPT. 
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Figure A69: Map of 2017 Toyota accidents based on injury severity in the FSLDPT. 

 



 205 

 

Figure A70: Map of 2017 Honda accidents based on injury severity in the FSLDPT. 
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Figure A71: Map of 2017 Nissan accidents based on injury severity in the FSLDPT. 
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Figure A72: Map of 2018 GMC accidents based on injury severity in the FSLDPT. 
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Figure A73: Map of 2018 Chevrolet accidents based on injury severity in the FSLDPT. 

 



 209 

 

Figure A74: Map of 2018 RAM accidents based on injury severity in the FSLDPT. 
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Figure A75: Map of 2018 Toyota accidents based on injury severity in the FSLDPT. 
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Figure A76: Map of 2018 Honda accidents based on injury severity in the FSLDPT. 
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Figure A77: Map of 2018 Nissan accidents based on injury severity in the FSLDPT. 
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APPENDIX B. GPS AND ROAD VIEWS OF FARS CRASHES 

Link to viewable PowerPoint file of visually inspected crashes. If clicking the link does not 

work, copy and paste it into your web browser. 

https://www.dropbox.com/s/kn2koi3xjqy4n8i/Presentation%20of%20Visual%20Inspecti

on%20of%20Fatal%20and%20Non-Fatal.pptx?dl=0  

  

https://www.dropbox.com/s/kn2koi3xjqy4n8i/Presentation%20of%20Visual%20Inspection%20of%20Fatal%20and%20Non-Fatal.pptx?dl=0
https://www.dropbox.com/s/kn2koi3xjqy4n8i/Presentation%20of%20Visual%20Inspection%20of%20Fatal%20and%20Non-Fatal.pptx?dl=0
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APPENDIX C. JAVA BARGAINING CODE 

/* 

 * To change this license header, choose License Headers in Project Properties. 

 * To change this template file, choose Tools | Templates 

 * and open the template in the editor. 

 */ 

package connectedvehiclebargaining; 

import java.math.*; 

import java.util.*; 

/** 

 **************************Program Description**************************** 

 * Generates solutions for avoiding a vehicle on vehicle crash using an Archimedean 

weight optimization. 

* 

 *  

* 



 215 

 * ///////////////////////////////////////////////Variable Dictionary////////////////////////////////////////////////// 

 * a1: [double] is the solved for acceleration of vehicle 1 

 * a2: [double] is the solved for acceleration of vehicle 2 

 * acc: [double] is the absolute acceleration that can be achieved in 2 seconds to guarantee 

the max acceleration is not violated 

 * acc1: [double] determines the acceleration for vehicle 1  

 * acc2: [double] determines the acceleration for vehicle 2 

 * arch1: [double array] in the Archimedean method array of values for previous best 

solution to compare to arch2 

 * arch2: [double array] in the Archimedean method array of values for current solution to 

compare to arch1 

 * best: [double array] stores the values for the new best solution to the Archimedean 

comparison 

 * d: [double] in the velocity method is the initial distance in meters 

 * dis: [double] initial distance between vehicles 1 and 2 in meters 

 * dv: [double] is the difference between the two velocities (v1 and v2) 

 * emv1: [double] emergency vehicle status for vehicle 1 (0 for emergency vehicle, 1 for 

non-emergency vehicle) 
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 * emv2: [double] emergency vehicle status for vehicle 2 (0 for emergency vehicle, 1 for 

non-emergency vehicle) 

 * i: [double] counter in a for loop that runs for the difference between vehicles 1 and 2 

velocities 

 * maxacc: [double] is the max acceleration most vehicles can safely operate at 

 * solnnew: [double array] array of final velocities and accelerations to be compared in the 

Archimedean 

 * solnnull: [double array] is the array set as a baseline for the first Archimedean 

comparison  

 * t: [double] global static variable for the max time in seconds needed to avoid a crash for 

proper spacing 

 * test1: [boolean] returns true if the acceleration of vehicle 1 is with in a feasible value of 

4.6m/s^2 

 * test2: [boolean] returns true if the acceleration of vehicle 2 is with in a feasible value of 

4.6m/s^2 

 * v1: [double] is the solved for velocity of vehicle 1 

 * v1i: [double] input of vehicle 1's velocity in mph  

 * v1ims: [double] converts v1i to meters per second for calculations 

 * v2: [double] is the solved for velocity of vehicle 2 
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 * v2i: [double] input of vehicle 2's velocity in mph 

 * v2ims: [double]  converts v2i to meters per second for calculations 

 * value1: [double] value of the Archimedean for the previous best solution 

 * value2: [double] value of the Archimedean for the current solution for comparison to 

previous best 

 * vel: [double array] array of the values for the solved for velocities of vehicles 1 and 2 

 * vf1: [double] in the velocity method is the final velocity found for vehicle 1 

 * vf2: [double] in the velocity method is the final velocity found for vehicle 2 

 * vi1: [double] in the velocity method is the initial velocity for vehicle 1 

 * vi2: [double] in the velocity method is the initial velocity for vehicle 2 

 * w1: [double] weight for the emergency vehicle portion of the Archimedean comparison 

 * w2: [double] weight for the vehicle velocity portion of the Archimedean comparison 

 * w3: [double] weight for the vehicle acceleration portion of the Archimedean comparison 

 *  

 */ 

public class ConnectedVehicleBargaining { 
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    static double t = 3; 

 

    /** 

     * ///////////////////////// Main Method Description ////////////////////////// 

     * Calls on other methods to compute optimization for finding final velocities 

     * based on vehicle physical limitations, and particle physics. Those values are  

     * then passed to the Archimedean to determine if the solution is better than  

     * previously found solution. 

     */ 

    public static void main(String[] args) { 

 

        //setting initial values for the situation  

        double v1i = 50;//vehicle 1 in mph 

        double v2i = 90;//vehicle 2 in mph 

        double dis = 20;// distance between 1 and 2 in meters 

        double emv1 = 1; //0 for emergency vehicle, 1 for none emergency vehicle 

        double emv2 = 1; //0 for emergency vehicle, 1 for none emergency vehicle 
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        // converts speed into meters per second 

        double v1ims = v1i * 0.44704; 

        double v2ims = v2i * 0.44704; 

 

        double acc1 = AccelerationValue(v1i, v2i);//determine acceleration for vehicle 1  

        double acc2 = AccelerationValue(v1i, v2i);//determine acceleration for vehicle 2 

 

        double solnnull[] = {emv1, emv2, v1ims, v2ims, acc1, acc2} 

        //Archimedean weights 

        double w1 = 0.6; 

        double w2 = 0.3; 

        double w3 = 0.1; 

 

        double best[] = new double[5]; 

 

        best = solnnull; 
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        System.out.println("The initial situation:= emv1: " + best[0] + ", emv2: " + best[1] + 

", vehicle 1 initial speed: " + best[2] 

                + "m/s, vehicle 2 initial speed: " + best[3] + "m/s, acceleration 1: " + best[4] + 

"m/s^2, acceleration 2: " 

                + best[5] + "m/s^2"); 

     

            double vel[] = Velocity(v1ims, v2ims, dis); 

            double v1 = vel[0]; 

            double v2 = vel[1]; 

            double a1 = AccelerationValue(v1ims, v1); 

            double a2 = AccelerationValue(v2ims, v2); 

//            System.out.println("solution new: vehicle 1 speed " + v1/0.44704 + "mph, vehicle 

2 speed " + v2/0.44704 + "mph, acc1 " + a1 + ", acc2 " + a2); 

            double solnnew[] = {emv1, emv2, v1, v2, a1, a2}; 

 

            best = Archimedean(w1, w2, w3, best, solnnew); 
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                System.out.println("The solution:= emv1: " + best[0] + ", emv2: " + best[1] + ", 

vehicle 1 speed: " + best[2]/0.44704 

                        + "mph, vehicle 2 speed: " + best[3]/0.44704 + "mph, acceleration 1: " + 

best[4] + "m/s^2, acceleration 2: " 

                        + best[5] + "m/s^2"); 

    } 

    /** 

     **********Archimedean Method Description********************* 

     * Compares two arrays by calculating values based on corresponding weights 

     * of each index of the array. The smallest value is returned 

     */ 

    public static double[] Archimedean(double w1, double w2, double w3, double[] set1, 

double set2[]) { 

 

        double arch1[] = set1; 

        double arch2[] = set2; 
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        double value1 = w1 * arch1[0] + w1 * arch1[1] + w2 * arch1[2] + w2 * arch1[3] + 

w3 * arch1[4] + w3 * arch1[5]; 

        double value2 = w1 * arch2[0] + w1 * arch2[1] + w2 * arch2[2] + w2 * arch2[3] + 

w3 * arch2[4] + w3 * arch2[5]; 

 

//        System.out.println("value 1: " + value1); 

//        System.out.println("value 2: " + value2); 

        if (value1 <= value2) { 

            return arch1; 

        } else { 

            return arch2; 

        } 

    } 

 

     

    /** 

     * *********Velocity Method Description********************* 
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     * Calculates the final velocities for both vehicles for avoiding a crash  

     * of the two vehicles. 

     */ 

    public static double[] Velocity(double v1i, double v2i, double dis) { 

 

        double vi1 = v1i; 

        double vi2 = v2i; 

        double vf1 = vi1; 

        double vf2 = vi2; 

        double d = dis; 

 

        //double vel[]= {vf1, vf2}; 

        for (double i = vi1; i <= vi2; i++) { 

             

            if ((vf2 - vf1) > (d / t) && Acceleration(vi1, vi2) == true) { 

                vf2 = vf2 - 1; 

            } else if ((vf2 - vf1) > (d / t) && Acceleration(vi1, vi2) == false) { 
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                vf2 = vf2 - 1; 

                vf1 = vf1 + 1; 

            } else if ((vf2 - vf1) <= (d / t) && Acceleration(vi1, vf1) == true && 

Acceleration(vi2, vf2) == true) { 

                double vel[] = {vf1, vf2}; 

//                System.out.println("Seen 1 Velocities: " + vel[0] / 0.44704 + ", " + vel[1] / 

0.44704); 

            } 

        } 

        double vel[] = {vf1, vf2}; 

        return vel; 

    } 

     

    /** 

     **********Acceleration Method Description******************************** 

     * Determines if the max acceleration of a standard vehicle (4.6 m/s^2) will 

     * be violated by the two velocity values entered. 
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     */ 

    public static boolean Acceleration(double v1, double v2) { 

 

        double maxacc = 4.6; 

        double dv = v2 - v1; 

        double acc = Math.abs(dv / 2);// 2 seconds is used for the time to give a factor of 

safety of 1.5 

//        System.out.println("current acc" + acc); 

        if (acc <= maxacc) { 

            return true; 

        } else { 

            return false; 

        } 

    }     

    /** 

     **********Acceleration Value Method Description*************************** 

     * Calculates the acceleration based on the input velocities. 
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     */ 

    public static double AccelerationValue(double v1, double v2) { 

 

        double dv = v2 - v1; 

        double acc = Math.abs(dv / 2);// 2 seconds is used for the time to give a factor of 

safety of 1.5 

 

        return acc; 

    } 

} 
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