1,286 research outputs found

    Inverse Seesaw Neutrino Mass from Lepton Triplets in the U(1)_Sigma Model

    Full text link
    The inverse seesaw mechanism of neutrino mass, i.e. m_nu = (m_D^2/m_N^2)epsilon_L where epsilon_L is small, is discussed in the context of the U(1)_Sigma model. This is a gauge extension of the Standard Model of particle interactions with lepton triplets (Sigma^+,Sigma^),Sigma^-) as (Type III) seesaw anchors for obtaining small Majorana neutrino masses.Comment: 7 pages, no figur

    The Influence of World-Sheet Boundaries on Critical Closed String Theory

    Get PDF
    This paper considers interactions between closed strings and open strings satisfying either Neumann or constant (point-like) Dirichlet boundary conditions in a BRST formalism in the critical dimension. With Neumann conditions this reproduces the well-known stringy version of the Higgs mechanism. With Dirichlet conditions the open-string states correspond to either auxiliary or Lagrange multiplier target-space fields and their coupling to the closed-string sector leads to constraints on the closed-string spectrum.Comment: 15 pages, QMW-92-18;NI9201

    The String Coupling Accelerates the Expansion of the Universe

    Full text link
    Generic cosmological models in non-critical string theory have a time-dependent dilaton background at a late epoch. The cosmological deceleration parameter Q_0 is given by the square of the string coupling, g_s^2, up to a negative sign. Hence the expansion of the Universe must accelerate eventually, and the observed value of Q_0 coresponds to g_s^2 ~ 0.6. In this scenario, the string coupling is asymptotically free at large times, but its present rate of change is imperceptibly small.Comment: 7 page

    Entropy of gravitating systems: scaling laws versus radial profiles

    Get PDF
    Through the consideration of spherically symmetric gravitating systems consisting of perfect fluids with linear equation of state constrained to be in a finite volume, an account is given of the properties of entropy at conditions in which it is no longer an extensive quantity (it does not scale with system's size). To accomplish this, the methods introduced by Oppenheim [1] to characterize non-extensivity are used, suitably generalized to the case of gravitating systems subject to an external pressure. In particular when, far from the system's Schwarzschild limit, both area scaling for conventional entropy and inverse radius law for the temperature set in (i.e. the same properties of the corresponding black hole thermodynamical quantities), the entropy profile is found to behave like 1/r, being r the area radius inside the system. In such circumstances thus entropy heavily resides in internal layers, in opposition to what happens when area scaling is gained while approaching the Schwarzschild mass, in which case conventional entropy lies at the surface of the system. The information content of these systems, even if it globally scales like the area, is then stored in the whole volume, instead of packed on the boundary.Comment: 16 pages, 11 figures. v2: addition of some references; the stability of equilibrium configurations is readdresse

    Fractal Holography: a geometric re-interpretation of cosmological large scale structure

    Get PDF
    The fractal dimension of large-scale galaxy clustering has been demonstrated to be roughly DF∌2D_F \sim 2 from a wide range of redshift surveys. If correct, this statistic is of interest for two main reasons: fractal scaling is an implicit representation of information content, and also the value itself is a geometric signature of area. It is proposed that the fractal distribution of galaxies may thus be interpreted as a signature of holography (``fractal holography''), providing more support for current theories of holographic cosmologies. Implications for entropy bounds are addressed. In particular, because of spatial scale invariance in the matter distribution, it is shown that violations of the spherical entropy bound can be removed. This holographic condition instead becomes a rigid constraint on the nature of the matter density and distribution in the Universe. Inclusion of a dark matter distribution is also discussed, based on theoretical considerations of possible universal CDM density profiles.Comment: 13 pp, LaTeX. Revised version; to appear in JCA

    Magnetic Wormholes and Vertex Operators

    Full text link
    We consider wormhole solutions in 2+12+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from magnetic wormhole action of Gupta, Hughes, Preskill and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed. ( To be published in Phys. Rev. D15)Comment: 18 pages of RevTex, preprint IP/BBSR/94-2

    Symmetry Breaking at enhanced Symmetry Points

    Get PDF
    The influence of world-sheet boundary condensates on the toroidal compactification of bosonic string theories is considered. At the special points in the moduli space at which the closed-string theory possesses an enhanced unbroken G×GG\times G symmetry (where GG is a semi-simple product of simply laced groups) a scalar boundary condensate parameterizes the coset G×G/GG\times G/G. Fluctuations around this background define an open-string generalization of the corresponding chiral nonlinear sigma model. Tree-level scattering amplitudes of on-shell massless states (\lq pions') reduce to the amplitudes of the principal chiral model for the group GG in the low energy limit. Furthermore, the condition for the vanishing of the renormalization group beta function at one loop results in the familiar equation of motion for that model. The quantum corrections to the open-string theory generate a mixing of open and closed strings so that the coset-space pions mix with the closed-string G×GG\times G gauge fields, resulting in a Higgs-like breakdown of the symmetry to the diagonal GG group. The case of non-oriented strings is also discussed.Comment: 32 pages, LaTeX, 2 figures in uuencoded fil

    A finite cutoff on the string worldsheet?

    Full text link
    D-brane backgrounds are specified in closed string theories by holes with appropriate mixed Dirichlet and Neumann boundary conditions on the string worldsheet. As presently stated, the prescription defining D-brane backgrounds is such that the Einstein equation is not equivalent to the condition for scale invariance on the string worldsheet. A modified D-brane prescription is found, that leads to the desired equivalence, while preserving all known D-brane lore. A possible interpretation is that the worldsheet cutoff is finite. Possible connections to recent work of Maldacena and Strominger, and Gopakumar and Vafa are suggested.Comment: 7 pages, RevTex; v2: typos corrected, superstring calculation included, discussion expanded - to be published in Phys.Rev.

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ

    Combinatorics of Boundaries in String Theory

    Get PDF
    We investigate the possibility that stringy nonperturbative effects appear as holes in the world-sheet. We focus on the case of Dirichlet string theory, which we argue should be formulated differently than in previous work, and we find that the effects of boundaries are naturally weighted by e−O(1/gst)e^{-O(1/g_{\rm st})}.Comment: 12 pages, 2 figures, LaTe
    • 

    corecore