2,014 research outputs found
Crew Scheduling for Netherlands Railways: "destination: customer"
: In this paper we describe the use of a set covering model with additional constraints for scheduling train drivers and conductors for the Dutch railway operator NS Reizigers. The schedules were generated according to new rules originating from the project "Destination: Customer" ("Bestemming: Klant" in Dutch). This project is carried out by NS Reizigers in order to increase the quality and the punctuality of its train services. With respect to the scheduling of drivers and conductors, this project involves the generation of efficient and acceptable duties with a high robustness against the transfer of delays of trains. A key issue for the acceptability of the duties is the included amount of variation per duty. The applied set covering model is solved by dynamic column generation techniques, Lagrangean relaxation and powerful heuristics. The model and the solution techniques are part of the TURNI system, which is currently used by NS Reizigers for carrying out several analyses concerning the required capacities of the depots. The latter are strongly influenced by the new rules.crew scheduling;dynamic column generation;lagrange relaxation;railways;set covering model
The role of electron-electron scattering in spin transport
We investigate spin transport in quasi 2DEG formed by III-V semiconductor
heterojunctions using the Monte Carlo method. The results obtained with and
without electron-electron scattering are compared and appreciable difference
between the two is found. The electron-electron scattering leads to suppression
of Dyakonov-Perel mechanism (DP) and enhancement of Elliott-Yafet mechanism
(EY). Finally, spin transport in InSb and GaAs heterostructures is investigated
considering both DP and EY mechanisms. While DP mechanism dominates spin
decoherence in GaAs, EY mechanism is found to dominate in high mobility InSb.
Our simulations predict a lower spin relaxation/decoherence rate in wide gap
semiconductors which is desirable for spin transport.Comment: to appear in Journal of Applied Physic
Branching on multi-aggregated variables
open5siopenGamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M.; Salvagnin, DomenicoGamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M.; Salvagnin, Domenic
Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach
A general framework to calculate the Zener current in an indirect
semiconductor with an externally applied potential is provided. Assuming a
parabolic valence and conduction band dispersion, the semiconductor is in
equilibrium in the presence of the external field as long as the electronphonon
interaction is absent. The linear response to the electron-phonon interaction
results in a non-equilibrium system. The Zener tunneling current is calculated
from the number of electrons making the transition from valence to conduction
band per unit time. A convenient expression based on the single particle
spectral functions is provided, enabling the numerical calculation of the Zener
current under any three-dimensional potential profile. For a one dimensional
potential profile an analytical expression is obtained for the current in a
bulk semiconductor, a semiconductor under uniform field and a semiconductor
under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin)
approximation. The obtained results agree with the Kane result in the low field
limit. A numerical example for abrupt p - n diodes with different doping
concentrations is given, from which it can be seen that the uniform field model
is a better approximation than the WKB model but a direct numerical treatment
is required for low bias conditions.Comment: 29 pages, 7 figure
Crew Scheduling for Netherlands Railways: "destination: customer"
: In this paper we describe the use of a set covering model with additional constraints for scheduling train drivers and conductors for the Dutch railway operator NS Reizigers. The schedules were generated according to new rules originating from the project "Destination: Customer" ("Bestemming: Klant" in Dutch). This project is carried out by NS Reizigers in order to increase the quality and the punctuality of its train services. With respect to the scheduling of drivers and conductors, this project involves the generation of efficient and acceptable duties with a high robustness against the transfer of delays of trains. A key issue for the acceptability of the duties is the included amount of variation per duty. The applied set covering model is solved by dynamic column generation techniques, Lagrangean relaxation and powerful heuristics. The model and the solution techniques are part of the TURNI system, which is currently used by NS Reizigers for carrying out several analyses concerning the required capacities of the depots. The latter are strongly influenced by the new rules
Phage Lytic Enzyme Cpl-1 for Antibacterial Therapy in Experimental Pneumococcal Meningitis
Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningiti
Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector
Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)
Spin diffusion/transport in -type GaAs quantum wells
The spin diffusion/transport in -type (001) GaAs quantum well at high
temperatures ( K) is studied by setting up and numerically solving the
kinetic spin Bloch equations together with the Poisson equation
self-consistently. All the scattering, especially the electron-electron Coulomb
scattering, is explicitly included and solved in the theory. This enables us to
study the system far away from the equilibrium, such as the hot-electron effect
induced by the external electric field parallel to the quantum well. We find
that the spin polarization/coherence oscillates along the transport direction
even when there is no external magnetic field. We show that when the scattering
is strong enough, electron spins with different momentums oscillate in the same
phase which leads to equal transversal spin injection length and ensemble
transversal injection length. It is also shown that the intrinsic scattering is
already strong enough for such a phenomena. The oscillation period is almost
independent on the external electric field which is in agreement with the
latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf
75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport
can be well understood by the inhomogeneous broadening, which is caused by the
momentum-dependent diffusion and the spin-orbit coupling, and the scattering.
The scattering, temperature, quantum well width and external magnetic/electric
field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy
Complete phenomenological gravitational waveforms from spinning coalescing binaries
The quest for gravitational waves from coalescing binaries is customarily
performed by the LIGO-Virgo collaboration via matched filtering, which requires
a detailed knowledge of the signal. Complete analytical coalescence waveforms
are currently available only for the non-precessing binary systems. In this
paper we introduce complete phenomenological waveforms for the dominant
quadrupolar mode of generically spinning systems. These waveforms are
constructed by bridging the gap between the analytically known inspiral phase,
described by spin Taylor (T4) approximants in the restricted waveform
approximation, and the ring-down phase through a phenomenological intermediate
phase, calibrated by comparison with specific, numerically generated waveforms,
describing equal mass systems with dimension-less spin magnitudes equal to 0.6.
The overlap integral between numerical and phenomenological waveforms ranges
between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v
The graceful exit from the anomaly-induced inflation: Supersymmetry as a key
The stable version of the anomaly-induced inflation does not need a fine
tuning and leads to sufficient expansion of the Universe. The non-stable
version (Starobinsky model) provides the graceful exit to the FRW phase. We
indicate the possibility of the inflation which is stable at the beginning and
unstable at the end. The effect is due to the soft supersymmetry breaking and
the decoupling of the massive sparticles at low energy.Comment: 10 pages, 2 figures using axodraw. Modified version. Discussion
concerning the gravitational scale modified, the effect of massive particles
in the last stage of inflation taken into accoun
- …
