1,477 research outputs found

    Mechanistic Links Between the Sedimentary Redox Cycle and Marine Acid-Base Chemistry

    Get PDF
    The redox state of Earth's surface is controlled on geological timescales by the flow of electrons through the sedimentary rock cycle, mediated largely by the weathering and burial of Cā€Sā€Fe phases. These processes buffer atmospheric pOā‚‚. At the same time, COā‚‚ influxes and carbonate burial control seawater acidā€base chemistry and climate over long timescales via the carbonateā€silicate cycle. However, these two systems are mechanistically linked and impact each other via charge balance in the hydrosphere. Here, we use a lowā€order Earth system model to interrogate a subset of these connections, with a focus on changes that occur during perturbations to electron flow through the sedimentary rock cycle. We show that the net oxidation or reduction of the Earth's surface can play an important role in controlling acidā€base processes in the oceans and thus climate, and suggest that these links should be more fully integrated into interpretive frameworks aimed at understanding Earth system evolution throughout Precambrian and Phanerozoic time

    Geochemical support for a climbing habit within the Paleozoic seed fern genus Medullosa

    Get PDF
    A long-standing problem in paleobotany is the accurate identification of the growth habits and statures of fossil plants. Tissue-specific analysis of stable carbon isotope ratios in plant fossils can provide an independent perspective on this issue. Lignin, a fundamental biopolymer providing structural support in plant tissues and the second most abundant organic material in plants, is ^(13)C depleted by several parts per thousand, averaging 4.1ā€°, relative to other plant constructional materials (e.g. cellulose). With this isotopic difference, the biochemical structural composition of ancient plants (and inferred stature) can be interrogated using microscale in situ isotope analysis between different tissues in fossils. We applied this technique to a well-preserved specimen of the Late Paleozoic seed plant Medullosa, an extinct genus with a variety of growth habits that includes several enigmatic yet abundant small-stemmed species widely found in calcium carbonate concretions (ā€œcoal ballsā€) in the Pennsylvanian coal beds of Iowa, USA. It remains unclear which of the medullosans were freestanding, and recent analysis of the medullosan vascular system has shown that this system provided little structural support to the whole plant. The leading hypothesis for small-stemmed medullosan specimens predicts that cortical tissues could have provided additional structural support, but only if they were lignified. The expected isotopic difference between lignified tissue and unlignified tissue is smaller than that expected from pure extracts, for the simple reason that even woody tissues maximally contain 40% lignin (by mass). This reduces the expected maximum difference between weakly and heavily lignified tissues by 60%, down to ~0.5ā€°ā€“2ā€°. Analysis of the medullosan stem reveals a consistent difference in isotope ratios of 0.7ā€°ā€“1.0ā€° between lignified xylem and cortical tissues. This implies low abundances of lignin (between 0% and 11%) within the cortex. This inferred structural biochemistry supports hypotheses that the peripheral portions of these medullosan stems were not biomechanically reinforced to permit the plants to grow as freestanding, arborescent trees. A number of climbing or scandent medullosans have been identified in the fossil record, and this mode of growth has been suggested to be common within the group on the basis of observations from comparative biomechanics, hydraulics, and development. Finally, this mode of growth is common in several clades of stem group seed plants, including Lyginopteris and Callistophyton, along with Medullosa. This study provides further support for ideas that place a great portion of early seed plant diversity under the canopy, rather than forming it

    An orbital window into the ancient Sun's mass

    Get PDF
    Models of the Sun's long-term evolution suggest that its luminosity was substantially reduced 2-4 billion years ago, which is inconsistent with substantial evidence for warm and wet conditions in the geological records of both ancient Earth and Mars. Typical solutions to this so-called "faint young Sun paradox" consider changes in the atmospheric composition of Earth and Mars, and while attractive, geological verification of these ideas is generally lacking-particularly for Mars. One possible underexplored solution to the faint young Sun paradox is that the Sun has simply lost a few percent of its mass during its lifetime. If correct, this would slow, or potentially even offset the increase in luminosity expected from a constant-mass model. However, this hypothesis is challenging to test. Here, we propose a novel observational proxy of the Sun's ancient mass that may be readily measured from accumulation patterns in sedimentary rocks on Earth and Mars. We show that the orbital parameters of the Solar system planets undergo quasi-cyclic oscillations at a frequency, given by secular mode g_2-g_5, that scales approximately linearly with the Sun's mass. Thus by examining the cadence of sediment accumulation in ancient basins, it is possible distinguish between the cases of a constant mass Sun and a more massive ancient Sun to a precision of greater than about 1 per cent. This approach provides an avenue toward verification, or of falsification, of the massive early Sun hypothesis.Comment: 7 pages, 4 Figures. Accepted to The Astrophysical Journal Letter

    Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle

    Get PDF
    The sulfur cycle influences the respiration of sedimentary organic matter, the oxidation state of the atmosphere and oceans, and the composition of seawater. However, the factors governing the major sulfur fluxes between seawater and sedimentary reservoirs remain incompletely understood. Using macrostratigraphic data, we quantified sulfate evaporite burial fluxes through Phanerozoic time. Approximately half of the modern riverine sulfate flux comes from weathering of recently deposited evaporites. Rates of sulfate burial are unsteady and linked to changes in the area of marine environments suitable for evaporite formation and preservation. By contrast, rates of pyrite burial and weathering are higher, less variable, and largely balanced, highlighting a greater role of the sulfur cycle in regulating atmospheric oxygen

    Breathing room for early animals

    Get PDF
    If life has been present on our planet for much of its historyā€”more than three and a half billion yearsā€”why did it take so long for animals to appear? This question emerged long ago from the incipient fabric of the fossil record, which embodies the sudden appearance of metazoans in sedimentary strata deposited near the end of Precambrian timeā€”and scientists have wrestled with this issue now for well over a hundred years (1). For the past 50 or so years, the most popular and pertinacious hypotheses have concerned atmospheric dioxygen (2ā€“5). Because of their aerobic physiology, the idea was that O_2 levels were perhaps too low to have supported animals until sometime near the end of Precambrian time, and that rising O2 levels thereafter provided a quantum evolutionary leap of sorts for aerobic biology culminating in the ā€œlateā€ evolution of animals (3). A recent study of middle Proterozoic sedimentary rocks in China, however, favors a different viewā€”suggesting that O_2 levels capable of supporting animal physiology were present more than 500 million years before the appearance of animals (6)

    Climate change and the selective signature of the Late Ordovician mass extinction

    Get PDF
    Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia

    A shorter Archean day-length biases interpretations of the early Earth's climate

    Get PDF
    Earth's earliest sedimentary record contains evidence that surface temperatures were similar to, or perhaps even warmer than modern. In contrast, standard Solar models suggest the Sun was 25% less luminous at this ancient epoch, implying a cold, frozen planetā€”all else kept equal. This discrepancy, known as the Faint Young Sun Paradox, remains unresolved. Most proposed solutions invoke high concentrations of greenhouse gases in the early atmosphere to offset for the fainter Sun, though current geological constraints are insufficient to verify or falsify these scenarios. In this work, we examined several simple mechanisms that involve the role played by Earth's spin rate, which was significantly faster during Archean time. This faster spin rate enhances the equator-to-pole temperature gradient, facilitating a warm equator, while maintaining cold poles. Results show that such an enhanced meridional gradient augments the meridional gradient in carbonate deposition, which biases the surviving geological record away from the global mean, toward warmer waters. Moreover, using simple atmospheric models, we found that the faster-spinning Earth was less sensitive to ice-albedo feedbacks, facilitating larger meridional temperature gradients before succumbing to global glaciation. We show that within the faster-spinning regime, the greenhouse warming required to generate an ice-free Earth can differ from that required to generate an Earth with permanent ice caps by the equivalent of 1ā€“2 orders of magnitude of pCO_2. Accordingly, the resolution of the Faint Young Sun problem depends significantly on whether the early Earth was ever, or even at times, ice-free

    A shorter Archean day-length biases interpretations of the early Earth's climate

    Get PDF
    Earth's earliest sedimentary record contains evidence that surface temperatures were similar to, or perhaps even warmer than modern. In contrast, standard Solar models suggest the Sun was 25% less luminous at this ancient epoch, implying a cold, frozen planet-all else kept equal. This discrepancy, known as the Faint Young Sun Paradox, remains unresolved. Most proposed solutions invoke high concentrations of greenhouse gases in the early atmosphere to offset for the fainter Sun, though current geological constraints are insufficient to verify or falsify these scenarios. In this work, we examined several simple mechanisms that involve the role played by Earth's spin rate, which was significantly faster during Archean time. This faster spin rate enhances the equator-to-pole temperature gradient, facilitating a warm equator, while maintaining cold poles. Results show that such an enhanced meridional gradient augments the meridional gradient in carbonate deposition, which biases the surviving geological record away from the global mean, toward warmer waters. Moreover, using simple atmospheric models, we found that the faster-spinning Earth was less sensitive to ice-albedo feedbacks, facilitating larger meridional temperature gradients before succumbing to global glaciation. We show that within the faster-spinning regime, the greenhouse warming required to generate an ice-free Earth can differ from that required to generate an Earth with permanent ice caps by the equivalent of 1-2 orders of magnitude of pCO2. Accordingly, the resolution of the Faint Young Sun problem depends significantly on whether the early Earth was ever, or even at times, ice-free.Comment: 15 pages. 7 Figures. Accepted for publication in Earth and Planetary Science Letter
    • ā€¦
    corecore