Models of the Sun's long-term evolution suggest that its luminosity was
substantially reduced 2-4 billion years ago, which is inconsistent with
substantial evidence for warm and wet conditions in the geological records of
both ancient Earth and Mars. Typical solutions to this so-called "faint young
Sun paradox" consider changes in the atmospheric composition of Earth and Mars,
and while attractive, geological verification of these ideas is generally
lacking-particularly for Mars. One possible underexplored solution to the faint
young Sun paradox is that the Sun has simply lost a few percent of its mass
during its lifetime. If correct, this would slow, or potentially even offset
the increase in luminosity expected from a constant-mass model. However, this
hypothesis is challenging to test. Here, we propose a novel observational proxy
of the Sun's ancient mass that may be readily measured from accumulation
patterns in sedimentary rocks on Earth and Mars. We show that the orbital
parameters of the Solar system planets undergo quasi-cyclic oscillations at a
frequency, given by secular mode g_2-g_5, that scales approximately linearly
with the Sun's mass. Thus by examining the cadence of sediment accumulation in
ancient basins, it is possible distinguish between the cases of a constant mass
Sun and a more massive ancient Sun to a precision of greater than about 1 per
cent. This approach provides an avenue toward verification, or of
falsification, of the massive early Sun hypothesis.Comment: 7 pages, 4 Figures. Accepted to The Astrophysical Journal Letter