1,649 research outputs found

    Beam-beam simulation code BBSIM for particle accelerators

    Full text link
    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. We also present results from the studies of two schemes proposed to compensate the beam-beam interactions: a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current-carrying wire, b) the use of a low energy electron beam to compensate the head-on interactions in RHIC

    Fast Breeder Reactors

    Get PDF

    Perturbation theory of the space-time non-commutative real scalar field theories

    Full text link
    The perturbative framework of the space-time non-commutative real scalar field theory is formulated, based on the unitary S-matrix. Unitarity of the S-matrix is explicitly checked order by order using the Heisenberg picture of Lagrangian formalism of the second quantized operators, with the emphasis of the so-called minimal realization of the time-ordering step function and of the importance of the \star-time ordering. The Feynman rule is established and is presented using ϕ4\phi^4 scalar field theory. It is shown that the divergence structure of space-time non-commutative theory is the same as the one of space-space non-commutative theory, while there is no UV-IR mixing problem in this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference

    F1: An Eight Channel Time-to-Digital Converter Chip for High Rate Experiments

    Get PDF
    A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented.A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented
    corecore