71 research outputs found

    The CIELO collaboration: Progress in international evaluations of neutron reactions on Oxygen, Iron, Uranium and Plutonium

    Get PDF
    The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear technologies – 16O, 56Fe, 235,8U and 239Pu – with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality

    Mesoscale frontal dynamics: shaping the environment of primary production in the Antarctic Circumpolar Current

    No full text
    The frontal regions of the Antarctic Circumpolar Current (ACC) differ from other parts of the ACC due to higher phytoplankton concentrations and primary production rates. We hypothesise that the enhancement of primary production results from the mesoscale frontal dynamics, in particular the cross-front circulation related to baroclinic instability.The hypothesis is corroborated by data collected in austral summer 1995/1996 at the Antarctic Polar Front between 1 W and 12 E during quasi-synoptic surveys with a measuring system combining towed and vessel-mounted instruments. Further confirmation is obtained from moored current meters and an earlier section worked across the front in austral winter 1992.The quasi-synoptic surveys cover a meander structure of the front and a cold cyclonic eddy located to its south. The highest chlorophyll concentrations, correlating with enhanced primary production rates, are found in a band of mesoscale patches aligned with the front and in a tongue extending southward from the front along the leading edge of a meander ridge. The increased chlorophyll concentrations at the meander edge are explained by confluence of surface water, which carries with it the phytoplankton grown in favourable light conditions. While mesoscale surface confluence structures the synoptic chlorophyll distribution pattern, the mean enhancement of primary production at the front can be attributed to the influence of cross-front circulation on stratification. Ageostrophic cross-front circulation related to mesoscale upwelling and downwelling was identified at a site of eddy/front interaction. Consistent with the principle of potential vorticity conservation, upwelling was found to occur on the anticyclonic, equatorward side of the jet and downwelling on the cyclonic, poleward side in the frontogenetic situation. The associated cross-front circulation is characterised by poleward motion of light water at the surface and a reversed flow of dense water at greater depth; thus it contributes to stratification and thereby to a more favourable photic environment for the phytoplankton growing in the shallower mixed layer. While the cross-front circulation varies on horizontal scales of <10 to >100 km and time scales of days to weeks, it is constrained to sites of available potential energy, i.e. fronts marked by sloping isopycnals

    Development and validation of response markers to predict survival and pleurodesis success in patients with malignant pleural effusion (PROMISE): A multicohort analysis.

    Get PDF
    Background The prevalence of malignant pleural effusion is increasing worldwide, but prognostic biomarkers to plan treatment and to understand the underlying mechanisms of disease progression remain unidentified. The PROMISE study was designed with the objectives to discover, validate, and prospectively assess biomarkers of survival and pleurodesis response in malignant pleural effusion and build a score that predicts survival.Methods In this multicohort study, we used five separate and independent datasets from randomised controlled trials to investigate potential biomarkers of survival and pleurodesis. Mass spectrometry-based discovery was used to investigate pleural fluid samples for differential protein expression in patients from the discovery group with different survival and pleurodesis outcomes. Clinical, radiological, and biological variables were entered into least absolute shrinkage and selection operator regression to build a model that predicts 3-month mortality. We evaluated the model using internal and external validation.Findings 17 biomarker candidates of survival and seven of pleurodesis were identified in the discovery dataset. Three independent datasets (n=502) were used for biomarker validation. All pleurodesis biomarkers failed, and gelsolin, macrophage migration inhibitory factor, versican, and tissue inhibitor of metalloproteinases 1 (TIMP1) emerged as accurate predictors of survival. Eight variables (haemoglobin, C-reactive protein, white blood cell count, Eastern Cooperative Oncology Group performance status, cancer type, pleural fluid TIMP1 concentrations, and previous chemotherapy or radiotherapy) were validated and used to develop a survival score. Internal validation with bootstrap resampling and external validation with 162 patients from two independent datasets showed good discrimination (C statistic values of 0.78 [95% CI 0.72-0.83] for internal validation and 0.89 [0.84-0.93] for external validation of the clinical PROMISE score).Interpretation To our knowledge, the PROMISE score is the first prospectively validated prognostic model for malignant pleural effusion that combines biological and clinical parameters to accurately estimate 3-month mortality. It is a robust, clinically relevant prognostic score that can be applied immediately, provide important information on patient prognosis, and guide the selection of appropriate management strategies
    • …
    corecore