1,716 research outputs found

    Development and Validation of Implicit Measures of Emotional Intelligence Attributes

    Get PDF
    Emotional intelligence is important for success in a wide range of social and professional roles. Interest in EI has spawned a debate about whether EI should be defined and measured as a set of abilities or as a set of dispositional self-perceptions, the latter being typically assessed with self-report measures that are susceptible to inaccurate self-knowledge and impression management artifacts. This research used Implicit Association Test procedures to develop measures of emotional intelligence and examined their construct validity using a multitrait-multimethod design. The results of confirmatory factor analyses of nested latent trait models provided evidence of convergent and discriminant validity

    Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    Get PDF
    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ^(30)Si dataset spans a range from −4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ^(30)Si distributions, but systematic texture-specific δ^(30)Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean −1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during diagenesis and metamorphism, although fractionations during diagenetic phase transformations may have affected certain textures. We interpret these systematic variations to reflect fractionation during silica precipitation as well as isotopically distinct fluids from which later phases originated. SIMS δ^(18)O values fall in a range from 16.39‰ to 23.39‰ (n = 381), similar to previously published data from bulk gas source mass spectrometry of Onverwacht cherts. We observed only limited examples of texture-related variation in δ^(18)O and did not observe correlation of δ^(18)O with δ^(30)Si trends. This is consistent with hypotheses that Si isotope ratios are more resistant to alteration under conditions of rock-buffered diagenesis (Marin-Carbonne et al., 2011). Our results indicate that low temperature processes fractionated silicon isotopes in early Archean marine basins, a behavior that probably precludes the application of chert δ^(30)Si as a robust paleothermometer. The values we observe for facies that sedimentological and petrographic observations indicate formed as primary and earliest diagenetic silica precipitates from seawater are more ^(30)Si-rich than that expected for bulk silicate Earth. This is consistent with the hypothesis that the silicon isotope budget is balanced by the coeval deposition of ^(30)Si-enriched cherts and ^(30)Si-depleted iron formation lithologies. Precipitation of authigenic clay minerals in both terrestrial and marine settings may have also comprised a large ^(30)Si-depleted sink, with the corollary of an important non-carbonate alkalinity sink consuming cations released by silicate weathering

    Global Night-Time Lights for Observing Human Activity

    Get PDF
    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems

    Ventricular septal defect associated with aneurysm of the membranous septum

    Get PDF
    The most common variety of ventricular septal defect, a perimembranous defect, is frequently associated with a so-called aneurysm of the membranous septum. Previous studies have suggested that ventricular septal defects associated with an aneurysm of the membranous septum tend to spontaneously decrease in size or close more than defects without such an aneurysm. To better define the natural history of this entity, clinical and catheterization data from 87 patients with ventricular septal defect and aneurysm of the membranous septum were reviewed. The initial evaluation was made at a median age of 0.3 years (range 0.1 to 11), with the final evaluation at a median age of 10 years (range 1.5 to 20) and a median duration of follow-up of 8.6 years (range 1.2 to 18.8).Approximately 75% of the ventricular septal defects had a small or no left to right shunt at last evaluation. Overall, 48 patients (55%) had no significant change in the size of the defect, and 39 (45%) showed improvement during the period of observation. Only four patients (5%) had spontaneous closure of the defect. Of the 49 patients who presented with a large left to right shunt, with or without congestive heart failure, 23 (47%) had persistence of a shunt large enough to warrant surgery. When spontaneous improvement occurred, it did so by 6 years of age in all but one patient. Therefore, a continued tendency for a ventricular septal defect associated with an aneurysm of the membranous septum to spontaneously decrease in size or close after this age may be less likely than previously suggested. The actual morphologic substrate of this entity usually consists of tricuspid valve tissue adherent to the edges of the ventricular septal defect

    Rotational velocities of low-mass stars in the Pleiades and Hyades

    Get PDF
    We have obtained high-resolution spectra of 89 M dwarf members of the Pleiades and Hyades and have derived radial velocities, H-alpha equivalent widths, and spectroscopic rotational velocities for these stars. Typical masses of the newly-observed Pleiades and Hyades stars are ~ 0.4 M_{\sun} and ~ 0.2 M_{\sun}, respectively. We combine our new observations with previously published data to explore the rotational evolution of young stars with M < 0.4 M_\sun. The average rotation rate in the Hyades (age 600 Myr) is about 0.4 that of the Pleiades (110 Myr), and the mean equivalent widths of H-alpha are also lower. As found in previous studies, the correlation between rotation and chromospheric activity is identical in both clusters, implying that the lower activity in the Hyades is a result of the lower rotation rates. We show that a simple scaling of the Pleiades rotational distribution for M \leq 0.4 M_{\sun}, corrected for the effects of structural evolution, matches that of the Hyades if the average angular momentum loss from the Pleiades to the Hyades age is factor of \approx 6. This suggests that the distribution of initial angular momenta and disk-locking lifetimes for the lowest mass stars was similar in both clusters. We argue that this result provides further evidence for a saturation of the angular momentum loss rate at high rotational velocities.Comment: 22 pages, 11 figures, accepted for publication in The Astronomical Journal, tentatively scheduled for March 200

    All Six Planets Known to Orbit Kepler-11 Have Low Densities

    Full text link
    The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly-packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of \ik photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star's density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.Comment: 39 pages, 10 figure
    • …
    corecore