1,481 research outputs found

    Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law

    Get PDF
    The exchange of light pseudoscalars between fermions leads to a spin-independent potential in order g^4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are combined with those arisingfrom ISL tests, a direct experimental limit on the Yukawa coupling of light pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6 \times 10^-7), along with a new (and significantly improved) limit on the coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical Review Letters

    Gravitational solution to the Pioneer 10/11 anomaly

    Full text link
    A fully relativistic modified gravitational theory including a fifth force skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The theory allows for a variation with distance scales of the gravitational constant G, the fifth force skew symmetric field coupling strength omega and the mass of the skew symmetric field mu=1/lambda. A fit to the available anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a phenomenological representation of the "running" constants and values of the associated parameters are shown to exist that are consistent with fifth force experimental bounds. The fit to the acceleration data is consistent with all current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4) and (12) and a third table including our predictions for the anomalous perihelion advance of the planets was adde

    Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    Get PDF
    We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.Comment: 4 pages, 4 figure

    Fichte and Hegel on Recognition

    Get PDF
    In this paper I provide an interpretation of Hegel’s account of ‘recognition’ (Anerkennung) in the 1802-3 System of Ethical Life as a critique of Fichte’s account of recognition in the 1796-7 Foundations of Natural Right. In the first three sections of the paper I argue that Fichte’s account of recognition in the domain of right is not concerned with recognition as a moral attitude. I then turn, in section four, to a discussion of Hegel’s critique and transformation of Fichte’s conception of recognition. Hegel’s transformation consists, I argue, in the claim that a comprehensive account of recognition in the domain of right must be concerned with recognition as a moral attitude

    Geometric Random Inner Products: A New Family of Tests for Random Number Generators

    Get PDF
    We present a new computational scheme, GRIP (Geometric Random Inner Products), for testing the quality of random number generators. The GRIP formalism utilizes geometric probability techniques to calculate the average scalar products of random vectors generated in geometric objects, such as circles and spheres. We show that these average scalar products define a family of geometric constants which can be used to evaluate the quality of random number generators. We explicitly apply the GRIP tests to several random number generators frequently used in Monte Carlo simulations, and demonstrate a new statistical property for good random number generators

    New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory

    Full text link
    There is a unique Lorentz-violating modification of the Maxwell theory of photons, which maintains gauge invariance, CPT, and renormalizability. Restricting the modified-Maxwell theory to the isotropic sector and adding a standard spin-one-half Dirac particle p^\pm with minimal coupling to the nonstandard photon \widetilde{\gamma}, the resulting modified-quantum-electrodynamics model involves a single dimensionless "deformation parameter," \widetilde{\kappa}_{tr}. The exact tree-level decay rates for two processes have been calculated: vacuum Cherenkov radiation p^\pm \to p^\pm \widetilde{\gamma} for the case of positive \widetilde{\kappa}_{tr} and photon decay \widetilde{\gamma} \to p^+ p^- for the case of negative \widetilde{\kappa}_{tr}. From the inferred absence of these decays for a particular high-quality ultrahigh-energy-cosmic-ray event detected at the Pierre Auger Observatory and an excess of TeV gamma-ray events observed by the High Energy Stereoscopic System telescopes, a two-sided bound on \widetilde{\kappa}_{tr} is obtained, which improves by eight orders of magnitude upon the best direct laboratory bound. The implications of this result are briefly discussed.Comment: 18 pages, v5: published version in preprint styl

    Constraining New Forces in the Casimir Regime Using the Isoelectronic Technique

    Get PDF
    We report the first isoelectronic differential force measurements between a Au-coated probe and two Au-coated films, made out of Au and Ge. These measurements, performed at submicron separations using soft microelectromechanical torsional oscillators, eliminate the need for a detailed understanding of the probe-film Casimir interaction. The observed differential signal is directly converted into limits on the parameters α\alpha and λ\lambda which characterize Yukawa-like deviations from Newtonian gravity. We find \alpha \lsim 10^{12} for λ200\lambda \sim 200 nm, an improvement of \sim 10 over previous limits.Comment: 10 pages, 4 figure

    The flight of the bumblebee: vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking

    Full text link
    We study the vacuum solutions of a gravity model where Lorentz symmetry is spontaneously broken once a vector field acquires a vacuum expectation value. Results are presented for the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB. The purely radial LSB result corresponds to new black hole solutions. When possible, Parametrized Post-Newtonian (PPN) parameters are computed and observational boundaries used to constrain the Lorentz symmetry breaking scale.Comment: 12 pages, 2 figure

    Galaxy clustering constraints on deviations from Newtonian gravity at cosmological scales II: Perturbative and numerical analyses of power spectrum and bispectrum

    Full text link
    We explore observational constraints on possible deviations from Newtonian gravity by means of large-scale clustering of galaxies. We measure the power spectrum and the bispectrum of Sloan Digital Sky Survey galaxies and compare the result with predictions in an empirical model of modified gravity. Our model assumes an additional Yukawa-like term with two parameters that characterize the amplitude and the length scale of the modified gravity. The model predictions are calculated using two methods; the second-order perturbation theory and direct N-body simulations. These methods allow us to study non-linear evolution of large-scale structure. Using the simulation results, we find that perturbation theory provides reliable estimates for the power spectrum and the bispectrum in the modified Newtonian model. We also construct mock galaxy catalogues from the simulations, and derive constraints on the amplitude and the length scale of deviations from Newtonian gravity. The resulting constraints from power spectrum are consistent with those obtained in our earlier work, indicating the validity of the previous empirical modeling of gravitational nonlinearity in the modified Newtonian model. If linear biasing is adopted, the bispectrum of the SDSS galaxies yields constraints very similar to those from the power spectrum. If we allow for the nonlinear biasing instead, we find that the ratio of the quadratic to linear biasing coefficients, b_2/b_1, should satisfy -0.4 < b_2/b_1<0.3 in the modified Newtonian model.Comment: 12 pages, 7 figure

    Effects of Bose-Einstein Condensation on forces among bodies sitting in a boson heat bath

    Get PDF
    We explore the consequences of Bose-Einstein condensation on two-scalar-exchange mediated forces among bodies that sit in a boson gas. We find that below the condensation temperature the range of the forces becomes infinite while it is finite at temperatures above condensation.Comment: 10 pages, 2 figure
    corecore