1,789 research outputs found

    Dark energy fifth forces in torsion pendulum experiments

    Full text link
    The chameleon scalar field is a matter-coupled dark energy candidate whose nonlinear self-interaction partially screens its fifth force at laboratory scales. Nevertheless, small-scale experiments such as the torsion pendulum can provide powerful constraints on chameleon models. Here we develop a simple approximation for computing chameleon fifth forces in torsion pendulum experiments such as Eot-Wash. We show that our approximation agrees well with published constraints on the quartic chameleon, and we use it to extend these constraints to a much wider range of models. Finally, we forecast the constraints which will result from the next-generation Eot-Wash experiment, and show that this experiment will exclude a wide range of quantum-stable models.Comment: 15 pages, 17 figures; matches version accepted by PR

    Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law

    Get PDF
    The exchange of light pseudoscalars between fermions leads to a spin-independent potential in order g^4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are combined with those arisingfrom ISL tests, a direct experimental limit on the Yukawa coupling of light pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6 \times 10^-7), along with a new (and significantly improved) limit on the coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical Review Letters

    G77-340 Scheduling Irrigation by Electrical Resistance Blocks

    Get PDF
    Delay of irrigation for a few days during a critical part of the growing season can be expensive. A week\u27s delay in supplying irrigation water to corn or grain sorghum can reduce potential yield more than 30 bushels per acre. Several methods are available to help you schedule the right amount of water at the right time. One of these methods uses electrical resistance blocks discussed in this NebGuide

    Is violation of Newton's second law possible?

    Full text link
    Astrophysical observations (usually explained by dark matter) suggest that classical mechanics could break down when the acceleration becomes extremely small (the approach known as modified Newtonian dynamics, or MOND). I present the first analysis of MOND manifestations in terrestrial (rather than astrophysical) settings. A new effect is reported: around each equinox date, 2 spots emerge on the Earth where static bodies experience spontaneous acceleration due to the possible violation of Newton's second law. Preliminary estimates indicate that an experimental search for this effect can be feasible.Comment: 10 pages; minor changes to match the published versio

    Quantized Casimir Force

    Full text link
    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large separation (d) limit where retardation effects are essential we find i) that the Casimir force is quantized in units of 3\hbar c \alpha^2/(8\pi^2 d^4), and ii) that the force is repulsive for mirrors with same type of carrier, and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials like graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor \nu=0 quantum Hall state.Comment: 4.2 page
    corecore