243 research outputs found

    IMPROVE-DD: Integrating Multiple Phenotype Resources Optimises Variant Evaluation in genetically determined Developmental Disorders

    Get PDF
    Diagnosing rare developmental disorders using genome-wide sequencing data commonly necessitates review of multiple plausible candidate variants, often using ontologies of categorical clinical terms. We show that Integrating Multiple Phenotype Resources Optimizes Variant Evaluation in Developmental Disorders (IMPROVE-DD) by incorporating additional classes of data commonly available to clinicians and recorded in health records. In doing so, we quantify the distinct contributions of sex, growth, and development in addition to Human Phenotype Ontology (HPO) terms and demonstrate added value from these readily available information sources. We use likelihood ratios for nominal and quantitative data and propose a classifier for HPO terms in this framework. This Bayesian framework results in more robust diagnoses. Using data systematically collected in the Deciphering Developmental Disorders study, we considered 77 genes with pathogenic/likely pathogenic variants in ≥10 individuals. All genes showed at least a satisfactory prediction by receiver operating characteristic when testing on training data (AUC ≥ 0.6), and HPO terms were the best predictor for the majority of genes, though a minority (13/77) of genes were better predicted by other phenotypic data types. Overall, classifiers based upon multiple integrated phenotypic data sources performed better than those based upon any individual source, and importantly, integrated models produced notably fewer false positives. Finally, we show that IMPROVE-DD models with good predictive performance on cross-validation can be constructed from relatively few individuals. This suggests new strategies for candidate gene prioritization and highlights the value of systematic clinical data collection to support diagnostic programs

    Genomic variant sharing: a position statement.

    Get PDF
    Sharing de-identified genetic variant data is essential for the practice of genomic medicine and is demonstrably beneficial to patients. Robust genetic diagnoses that inform medical management cannot be made accurately without reference to genetic test results from other patients, as well as population controls. Errors in this process can result in delayed, missed or erroneous diagnoses, leading to inappropriate or missed medical interventions for the patient and their family. The benefits of sharing individual genetic variants, and the harms of not sharing them, are numerous and well-established. Databases and mechanisms already exist to facilitate deposition and sharing of pseudonomised genetic variants, but clarity and transparency around best practice is needed to encourage widespread use, prevent inconsistencies between different communities, maximise individual privacy and ensure public trust. We therefore recommend that widespread sharing of a small number of individual genetic variants associated with limited clinical information should become standard practice in genomic medicine. Information robustly linking genetic variants with specific conditions is fundamental biological knowledge, not personal information, and therefore should not require consent to share. For additional case-level detail about individual patients or more extensive genomic information, which is often essential for clinical interpretation, it may be more appropriate to use a controlled-access model for data sharing, with the ultimate aim of making as much information as open and de-identified as possible with appropriate consent

    A comparison of course-related stressors in undergraduate problem-based learning (PBL) versus non-PBL medical programmes

    Get PDF
    Background: Medical students report high levels of stress related to their medical training as well as to other personal and financial factors. The aim of this study is to investigate whether there are differences in course-related stressors reported by medical students on undergraduate problem-based learning (PBL) and non-PBL programmes in the UK. Method: A cross-sectional study of second-year medical students in two UK medical schools (one PBL and one non-PBL programme) was conducted. A 16-question self-report questionnaire, derived from the Perceived Medical Student Stress Scale and the Higher Education Stress Inventory, was used to measure course-related stressors. Following univariate analysis of each stressor between groups, multivariate logistic regression was used to determine which stressors were the best predictors of each course type, while controlling for socio-demographic differences between the groups. Results: A total of 280 students responded. Compared to the non-PBL students (N = 197), the PBL students (N = 83) were significantly more likely to agree that: they did not know what the faculty expected of them (Odds Ratio (OR) = 0.38, p = 0.03); there were too many small group sessions facilitated only by students resulting in an unclear curriculum (OR = 0.04, p < 0.0001); and that there was a lack of opportunity to explore academic subjects of interest (OR = 0.40, p = 0.02). They were significantly more likely to disagree that: there was a lack of encouragement from teachers (OR = 3.11, p = 0.02); and that the medical course fostered a sense of anonymity and feelings of isolation amongst students (OR = 3.42, p = 0.008). Conclusion: There are significant differences in the perceived course-related stressors affecting medical students on PBL and non-PBL programmes. Course designers and student support services should therefore tailor their work to minimise, or help students cope with, the specific stressors on each course type to ensure optimum learning and wellbeing among our future doctors

    Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain

    Get PDF
    We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where ‘hotspot’ residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease

    Towards a consensus around standards for smartphone apps and digital mental health

    Get PDF
    Mental disorders impact one in four people worldwide, yet access to care is challenging for those who suffer from them1. Mental health apps offer the potential to overcome access barriers for the nearly three billion people projected to own a smartphone by 2020. Although there are over 10,000 mental health apps commercially available, there are few resources available to help end users (patients, clinicians and health care organizations) to evaluate the quality and suitability of these products. Thus, there is an urgent need for an agreement about appropriate standards, principles and practices in research and evaluation of these tools.We represent leaders in mHealth research, industry and health care systems from around the globe, and we seek here to promote consensus on implementing these standards and principles for the evaluation of mental health apps. At a minimum, standards should include consideration of: a) data safety and privacy, b) effectiveness, c) user experience/adherence, d) data integration. Our consensus on the challenges and recommendations in each of these areas is presented below

    Detecting cryptic clinically relevant structural variation in exome-sequencing data increases diagnostic yield for developmental disorders.

    Get PDF
    Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases

    DECIPHER: Supporting the interpretation and sharing of rare disease phenotype-linked variant data to advance diagnosis and research.

    Get PDF
    Funder: European Molecular Biology Laboratory; Id: http://dx.doi.org/10.13039/100013060DECIPHER (https://www.deciphergenomics.org) is a free web platform for sharing anonymized phenotype-linked variant data from rare disease patients. Its dynamic interpretation interfaces contextualize genomic and phenotypic data to enable more informed variant interpretation, incorporating international standards for variant classification. DECIPHER supports almost all types of germline and mosaic variation in the nuclear and mitochondrial genome: sequence variants, short tandem repeats, copy-number variants, and large structural variants. Patient phenotypes are deposited using Human Phenotype Ontology (HPO) terms, supplemented by quantitative data, which is aggregated to derive gene-specific phenotypic summaries. It hosts data from >250 projects from ~40 countries, openly sharing >40,000 patient records containing >51,000 variants and >172,000 phenotype terms. The rich phenotype-linked variant data in DECIPHER drives rare disease research and diagnosis by enabling patient matching within DECIPHER and with other resources, and has been cited in >2,600 publications. In this study, we describe the types of data deposited to DECIPHER, the variant interpretation tools, and patient matching interfaces which make DECIPHER an invaluable rare disease resource
    • …
    corecore