2,373 research outputs found

    Local sublattice-symmetry breaking in rotationally faulted multilayer graphene

    Full text link
    Interlayer coupling in rotationally faulted graphene multilayers breaks the local sublattice-symmetry of the individual layers. We present a theory of this mechanism, which reduces to an effective Dirac model with space-dependent mass in an important limit. It thus makes a wealth of existing knowledge available for the study of rotationally faulted graphene multilayers. We demonstrate quantitative agreement between our theory and a recent experiment.Comment: Valley dependence in Eqs. (2) and (7) corrected; coordinates x and y interchanged in the appendi

    Grain Boundary Loops in Graphene

    Full text link
    Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a new class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy/interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a "flower" pattern in scanning tunneling microscopy (STM) studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.Comment: 23 pages, 7 figures. Revised title; expanded; updated reference

    Electron-electron interactions in decoupled graphene layers

    Full text link
    Multi-layer graphene on the carbon face of silicon carbide is an intriguing electronic system which typically consists of a stack of ten or more layers. Rotational stacking faults in this system dramatically reduce inter-layer coherence. In this article we report on the influence of inter-layer interactions, which remain strong even when coherence is negligible, on the Fermi liquid properties of charged graphene layers. We find that inter-layer interactions increase the magnitudes of correlation energies and decrease quasiparticle velocities, even when remote-layer carrier densities are small, and that they lessen the influence of exchange and correlation on the distribution of carriers across layers.Comment: 8 pages, 4 figures, submitte

    Quantitative tunneling spectroscopy of nanocrystals

    Get PDF
    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene"Â refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronic

    Evidence for Interlayer Electronic Coupling in Multilayer Epitaxial Graphene from Polarization Dependent Coherently Controlled Photocurrent Generation

    Full text link
    Most experimental studies to date of multilayer epitaxial graphene on C-face SiC have indicated that the electronic states of different layers are decoupled as a consequence of rotational stacking. We have measured the third order nonlinear tensor in epitaxial graphene as a novel approach to probe interlayer electronic coupling, by studying THz emission from coherently controlled photocurrents as a function of the optical pump and THz beam polarizations. We find that the polarization dependence of the coherently controlled THz emission expected from perfectly uncoupled layers, i.e. a single graphene sheet, is not observed. We hypothesize that the observed angular dependence arises from weak coupling between the layers; a model calculation of the angular dependence treating the multilayer structure as a stack of independent bilayers with variable interlayer coupling qualitatively reproduces the polarization dependence, providing evidence for coupling.Comment: submitted to Nano Letter

    Highly-ordered graphene for two dimensional electronics

    Full text link
    With expanding interest in graphene-based electronics, it is crucial that high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001) Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce epitaxial graphene sheets on a semiconductor. In this paper we show that graphene grown from the SiC(0001ˉ)(000\bar{1}) (C-terminated) surface are of higher quality than those previously grown on SiC(0001). Graphene grown on the C-face can have structural domain sizes more than three times larger than those grown on the Si-face while at the same time reducing SiC substrate disorder from sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let

    Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment

    Get PDF
    In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC

    Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement

    Full text link
    We present here an overview of the Fourier Transform Scanning Tunneling spectroscopy technique (FT-STS). This technique allows one to probe the electronic properties of a two-dimensional system by analyzing the standing waves formed in the vicinity of defects. We review both the experimental and theoretical aspects of this approach, basing our analysis on some of our previous results, as well as on other results described in the literature. We explain how the topology of the constant energy maps can be deduced from the FT of dI/dV map images which exhibit standing waves patterns. We show that not only the position of the features observed in the FT maps, but also their shape can be explained using different theoretical models of different levels of approximation. Thus, starting with the classical and well known expression of the Lindhard susceptibility which describes the screening of electron in a free electron gas, we show that from the momentum dependence of the susceptibility we can deduce the topology of the constant energy maps in a joint density of states approximation (JDOS). We describe how some of the specific features predicted by the JDOS are (or are not) observed experimentally in the FT maps. The role of the phase factors which are neglected in the rough JDOS approximation is described using the stationary phase conditions. We present also the technique of the T-matrix approximation, which takes into account accurately these phase factors. This technique has been successfully applied to normal metals, as well as to systems with more complicated constant energy contours. We present results recently obtained on graphene systems which demonstrate the power of this technique, and the usefulness of local measurements for determining the band structure, the map of the Fermi energy and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of Physics D: Applied Physic
    • …
    corecore