503 research outputs found

    Quantum oscillations of rectified dc voltage as a function of magnetic field in an "almost" symmetric superconducting ring

    Full text link
    Periodic quantum oscillations of a rectified dc voltage Vdc(B) vs the perpendicular magnetic field B were measured near the critical temperature Tc in a single superconducting aluminum almost symmetric ring (without specially created circular asymmetry) biased by alternating current with a zero dc component. With varying bias current and temperature, these Vdc(B) oscillations behave like the Vdc(B) oscillations observed in a circular-asymmetric ring but are of smaller amplitude. The Fourier spectra of the Vdc(B) functions exhibit a fundamental frequency, corresponding to the ring area, and its higher harmonics. Unexpectedly, satellite frequencies depending on the structure geometry and external parameters were found next to the fundamental frequency and around its higher harmonics.Comment: author english version, 2 pages, 3 figires, Proc. of the XXXIV Conference on Low-Temperature Physics "NT-34" (Russia, 2006

    A Variational Approach to Nonlocal Exciton-Phonon Coupling

    Full text link
    In this paper we apply variational energy band theory to a form of the Holstein Hamiltonian in which the influence of lattice vibrations (optical phonons) on both local site energies (local coupling) and transfers of electronic excitations between neighboring sites (nonlocal coupling) is taken into account. A flexible spanning set of orthonormal eigenfunctions of the joint exciton-phonon crystal momentum is used to arrive at a variational estimate (bound) of the ground state energy for every value of the joint crystal momentum, yielding a variational estimate of the lowest polaron energy band across the entire Brillouin zone, as well as the complete set of polaron Bloch functions associated with this band. The variation is implemented numerically, avoiding restrictive assumptions that have limited the scope of previous assaults on the same and similar problems. Polaron energy bands and the structure of the associated Bloch states are studied at general points in the three-dimensional parameter space of the model Hamiltonian (electronic tunneling, local coupling, nonlocal coupling), though our principal emphasis lay in under-studied area of nonlocal coupling and its interplay with electronic tunneling; a phase diagram summarizing the latter is presented. The common notion of a "self-trapping transition" is addressed and generalized.Comment: 33 pages, 11 figure

    Comment on `Dynamical properties of small polarons'

    Get PDF
    We show that the conclusion on the breakdown of the standard small polaron theory made recently by E.V. deMello and J. Ranninger (Phys. Rev. B 55, 14872 (1997)) is a result of an incorrect interpretation of the electronic and vibronic energy levels of the two-site Holstein model. The small polaron theory, when properly applied, agrees well with the numerical results of these authors. Also we show that their attempt to connect the properties of the calculated correlation functions with the features of the intersite electron hopping is unsuccessful.Comment: To appear in Phys. Rev.

    Electric Field Effect in Atomically Thin Carbon Films

    Full text link
    We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature

    Optical models of the molecular atmosphere

    Get PDF
    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered

    Effects of the electron-phonon coupling near and within the insulating Mott phase

    Full text link
    The role of the electron-phonon interaction in the Holstein-Hubbard model is investigated in the metallic phase close to the Mott transition and in the insulating Mott phase. The model is studied by means of a variational slave boson technique. At half-filling, mean-field static quantities are in good agreement with the results obtained by numerical techniques. By taking into account gaussian fluctuations, an analytic expression of the spectral density is derived in the Mott insulating phase showing that an increase of the electron-phonon coupling leads to a sensitive reduction of the Mott gap through a reduced effective repulsion. The relation of the results with recent experimental observations in strongly correlated systems is discussed.Comment: 4 pages, 4 figure
    corecore