240 research outputs found

    Optical models of the molecular atmosphere

    Get PDF
    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered

    Nanofabricated media with negative permeability at visible frequencies

    Full text link
    We report a nanofabricated medium made of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits strong magnetic response at visible-light frequencies, including bands with negative \mu. The magnetism arises due to the excitation of quadrupole plasmon resonances. Our approach shows for the first time the feasibility of magnetism at optical frequencies and paves a way towards magnetic and left-handed components for visible optics.Comment: 16 pages, 4 figures. submitted to Nature on 1 April 200

    Two Dimensional Electron and Hole Gases at the Surface of Graphite

    Full text link
    We report high-quality two-dimensional (2D) electron and hole gases induced at the surface of graphite by the electric field effect. The 2D carriers reside within a few near-surface atomic layers and exhibit mobilities up to 15,000 and 60,000 cm2/Vs at room and liquid-helium temperatures, respectively. The mobilities imply ballistic transport at micron scale. Pronounced Shubnikov-de Haas oscillations reveal the existence of two types of carries in both 2D electron and hole gases.Comment: related to cond-mat/0410631 where preliminary data for this experimental system were reporte

    Luttinger parameters and momentum distribution function for the half-filled spinless fermion Holstein model: A DMRG approach

    Full text link
    We reexamine the nature of the metallic phase of the one-dimensional half-filled Holstein model of spinless fermions. To this end we determine the Tomonaga-Luttinger-liquid correlation parameter KρK_\rho by large-scale density-matrix renormalisation-group (DMRG) calculations, exploiting (i) the leading-order scaling relations between the ground-state energy and the single-particle excitation gap and (ii) the static charge structure factor in the long-wavelength limit. While both approaches give almost identical results for intermediate-to-large phonon frequencies, we find contrasting behaviour in the adiabatic regime: (i) Kρ>1K_\rho>1 (attractive) versus (ii) Kρ<1K_\rho<1 (repulsive). The latter result for the correlation exponent is corroborated by data obtained for the momentum distribution function n(k)n(k), which puts the existence of an attractive metallic state in the spinless fermion Holstein model into question. We conclude that the scaling relation must be modified in the presence of electron-phonon interactions with noticeable retardation.Comment: 6 pages, 5 figures, revised versio

    Polaron and bipolaron dispersion curves in one dimension for intermediate coupling

    Full text link
    Bipolaron energies are calculated as a function of wave vector by a variational method of Gurari appropriate for weak or intermediate coupling strengths, for a model with electron-phonon interactions independent of phonon wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare electrons have a constant effective mass. A two-parameter trial function is taken for the relative motion of the two electrons in the bipolaron. Energies of bipolarons are compared with those of two single polarons as a function of wave vector for various parameter values. Results for effective masses at the zone center are also obtained. Comparison is made with data of other authors for bipolarons in the Hubbard-Holstein model, which differs mainly from the present model in that it has a tight-binding band structure for the bare electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe

    Positive Magneto-Resistance in Quasi-1D Conductors

    Full text link
    We present here a simple qualitative model that interpolates between the high and low temperature properties of quasi-1D conductors. At high temperatures we argue that transport is governed by inelastic scattering whereas at low temperatures the conductance decays exponentially with the electron dephasing length. The crossover between these regimes occurs at the temperature at which the elastic and inelastic scattering times become equal. This model is shown to be in quantitative agreement with the organic conductor TTT2I3δTTT_2I_{3-\delta}. Within this model, we also show that on the insulating side, the positive magnetoresistance of the form (H/T)2(H/T)^2 observed in TTT2I3δTTT_2I_{3-\delta} and other quasi-1D conductors can be explained by the role spin-flip scattering plays in the electron dephasing rate.Comment: 4 pages, Latex, no figure

    Multiple Current States of Two Phase-Coupled Superconducting Rings

    Full text link
    The states of two phase-coupled superconducting rings have been investigated. Multiple current states have been revealed in the dependence of the critical current on the magnetic field. The performed calculations of the critical currents and energy states in a magnetic field have made it possible to interpret the experiment as the measurement of energy states into which the system comes with different probabilities because of the equilibrium and non-equilibrium noises upon the transition from the resistive state to the superconducting state during the measurement of the critical currentComment: 5 pages, 5 figure

    Absolute instruments and perfect imaging in geometrical optics

    Full text link
    We investigate imaging by spherically symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive a number of properties of such devices, present a general method for designing them and use this method to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically homogeneous region and having a moderate refractive index range.Comment: 20 pages, 9 image

    Critical disorder effects in Josephson-coupled quasi-one-dimensional superconductors

    Full text link
    Effects of non-magnetic randomness on the critical temperature T_c and diamagnetism are studied in a class of quasi-one dimensional superconductors. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between the wires and T_c vanishes discontinuously when the randomness reaches a critical value. The parallel and transverse components of the penetration depth are found to diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking. The interplay between disorder and quantum phase fluctuations results in quantum critical behavior at T=0, manifesting itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.Comment: 4 pages, 2 figure

    Charge gap in the one--dimensional dimerized Hubbard model at quarter-filling

    Full text link
    We propose a quantitative estimate of the charge gap that opens in the one-dimensional dimerized Hubbard model at quarter-filling due to dimerization, which makes the system effectively half--filled, and to repulsion, which induces umklapp scattering processes. Our estimate is expected to be valid for any value of the repulsion and of the parameter describing the dimerization. It is based on analytical results obtained in various limits (weak coupling, strong coupling, large dimerization) and on numerical results obtained by exact diagonalization of small clusters. We consider two models of dimerization: alternating hopping integrals and alternating on--site energies. The former should be appropriate for the Bechgaard salts, the latter for compounds where the stacks are made of alternating TMTSFTMTSF and TMTTFTMTTF molecules. % (TMTSF)2X(TMTSF)_2 X and (TMTTF)2X(TMTTF)_2 X (XX denotes ClO4ClO_4, PF6PF_6, BrBr...).Comment: 33 pages, RevTeX 3.0, figures on reques
    corecore