45 research outputs found

    Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules

    Get PDF
    CDK8 and its paralog, CDK19, collectively termed ‘Mediator Kinase,’ are cyclin-dependent kinases that have been implicated as key rheostats in cellular homeostasis and developmental programming. CDK8 and CDK19 are incorporated, in a mutually exclusive manner, as part of a 4-protein complex called the Mediator kinase module. This module reversibly associates with the Mediator, a 26 subunit protein complex that regulates RNA Polymerase II mediated gene expression. As part of this complex, the Mediator kinases have been implicated in diverse process such as developmental signaling, metabolic homeostasis and in innate immunity. In recent years, dysregulation of Mediator kinase module proteins, including CDK8/19, has been implicated in the development of different human diseases, and in particular cancer. This has led to intense efforts to understand how CDK8/19 regulate diverse biological outputs and develop Mediator kinase inhibitors that can be exploited therapeutically. Herein, we review both context and function of the Mediator kinases at a molecular, cellular and animal level. In so doing, we illuminate emerging concepts underpinning Mediator kinase biology and highlight certain aspects that remain unsolved

    Integrin-linked kinase expression in myeloid cells promotes colon tumorigenesis

    Get PDF
    Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and treatment options for advanced CRC, which has a low 5-year survival rate, remain limited. Integrin-linked kinase (ILK), a multifunctional, scaffolding, pseudo-kinase regulating many integrin-mediated cellular processes, is highly expressed in many cancers. However, the role of ILK in cancer progression is yet to be fully understood. We have previously uncovered a pro-inflammatory role for myeloid-specific ILK in dextran sodium sulfate (DSS)-induced colitis. To establish a correlation between chronic intestinal inflammation and colorectal cancer (CRC), we investigated the role of myeloid-ILK in mouse models of CRC. When myeloid-ILK deficient mice along with the WT control mice were subjected to colitis-associated and APCmin/+-driven CRC, tumour burden was reduced by myeloid-ILK deficiency in both models. The tumour-promoting phenotype of macrophages, M2 polarization, in vitro was impaired by the ILK deficiency and the number of M2-specific marker CD206-expressing tumour-associated macrophages (TAMs) in vivo were significantly diminished in myeloid-ILK deficient mice. Myeloid-ILK deficient mice showed enhanced tumour infiltration of CD8+ T cells and reduced tumour infiltration of FOXP3+ T cells in colitis-associated and APCmin/+-driven CRC, respectively, with an overall elevated CD8+/FOXP3+ ratio suggesting an anti-tumour immune phenotypes. In patient CRC tissue microarrays we observed elevated ILK+ myeloid (ILK+ CD11b+) cells in tumour sections compared to adjacent normal tissues, suggesting a conserved role for myeloid-ILK in CRC development in both human and animal models. This study identifies myeloid-specific ILK expression as novel driver of CRC, which could be targeted as a potential therapeutic option for advanced disease

    CK1ε Is Required for Breast Cancers Dependent on β-Catenin Activity

    Get PDF
    Background: Aberrant β\beta-catenin signaling plays a key role in several cancer types, notably colon, liver and breast cancer. However approaches to modulate β\beta-catenin activity for therapeutic purposes have proven elusive to date. Methodology: To uncover genetic dependencies in breast cancer cells that harbor active β\beta-catenin signaling, we performed RNAi-based loss-of-function screens in breast cancer cell lines in which we had characterized β\beta-catenin activity. Here we identify CSNK1E, the gene encoding casein kinase 1 epsilon (CK1ε\varepsilon) as required specifically for the proliferation of breast cancer cells with activated β\beta-catenin and confirm its role as a positive regulator of β\beta-catenin-driven transcription. Furthermore, we demonstrate that breast cancer cells that harbor activated β\beta-catenin activity exhibit enhanced sensitivity to pharmacological blockade of Wnt/β\beta-catenin signaling. We also find that expression of CK1ε\varepsilon is able to promote oncogenic transformation of human cells in a β\beta-catenin-dependent manner. Conclusions/Significance: These studies identify CK1ε\varepsilon as a critical contributor to activated β\beta-catenin signaling in cancer and suggest it may provide a potential therapeutic target for cancers that harbor active β\beta-catenin. More generally, these observations delineate an approach that can be used to identify druggable synthetic lethal interactions with signaling pathways that are frequently activated in cancer but are difficult to target with the currently available small molecule inhibitors

    Oncogenic ERBB3 Mutations in Human Cancers

    Get PDF
    SummaryThe human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ∼11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo

    ImmunoPET helps predicting the efficacy of antibody-drug conjugates targeting TENB2 and STEAP1

    Get PDF
    The efficacy of antibody-drug conjugates (ADCs) targeted to solid tumors depends on biological processes that are hard to monitor in vivo. Zr-89-immunoPET of the ADC antibodies could help understand the performance of ADCs in the clinic by confirming the necessary penetration, binding, and internalization. This work studied monomethyl auristatin E (MMAE) ADCs against two targets in metastatic castration-resistant prostate cancer, TENB2 and STEAP1, in four patient-derived tumor models (LuCaP35V, LuCaP70, LuCaP77, LuCaP96.1). Three aspects of ADC biology were measured and compared: efficacy was measured in tumor growth inhibition studies; target expression was measured by immunohistochemistry and flow cytometry; and tumor antibody uptake was measured with In-111-mAbs and gamma counting or with Zr-89-immunoPET. Within each model, the mAb with the highest tumor uptake showed the greatest potency as an ADC. Sensitivity between models varied, with the LuCaP77 model showing weak efficacy despite high target expression and high antibody uptake. Ex vivo analysis confirmed the in vivo results, showing a correlation between expression, uptake and ADC efficacy. We conclude that Zr-89-immunoPET data can demonstrate which ADC candidates achieve the penetration, binding, and internalization necessary for efficacy in tumors sensitive to the toxic payload

    The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth

    Get PDF
    Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD+-dependent deacetylases is proposed to underlie the health benefits of calorie restriction (CR), a diet that broadly suppresses cancer in mammals. Here we show that CR induces a two-fold increase SIRT1 expression in the intestine of rodents and that ectopic induction of SIRT1 in a β-catenin-driven mouse model of colon cancer significantly reduces tumor formation, proliferation, and animal morbidity in the absence of CR. We show that SIRT1 deacetylates β-catenin and suppresses its ability to activate transcription and drive cell proliferation. Moreover, SIRT1 promotes cytoplasmic localization of the otherwise nuclear-localized oncogenic form of β-catenin. Consistent with this, a significant inverse correlation was found between the presence of nuclear SIRT1 and the oncogenic form of β−catenin in 81 human colon tumor specimens analyzed. Taken together, these observations show that SIRT1 suppresses intestinal tumor formation in vivo and raise the prospect that therapies targeting SIRT1 may be of clinical use in β−catenin-driven malignancies

    Revving the Throttle on an Oncogene: CDK8 Takes the Driver Seat: Figure 1.

    No full text

    Male infertility, impaired spermatogenesis, and azoospermia in mice deficient for the pseudophosphatase Sbf1

    Get PDF
    Pseudophosphatases display extensive sequence similarities to phosphatases but harbor amino acid alterations in their active-site consensus motifs that render them catalytically inactive. A potential role in substrate trapping or docking has been proposed, but the specific requirements for pseudophosphatases during development and differentiation are unknown. We demonstrate here that Sbf1, a pseudophosphatase of the myotubularin family, is expressed at high levels in seminiferous tubules of the testis, specifically in Sertoli’s cells, spermatogonia, and pachytene spermatocytes, but not in postmeiotic round spermatids. Mice that are nullizygous for Sbf1 exhibit male infertility characterized by azoospermia. The onset of the spermatogenic defect occurs in the first wave of spermatogenesis at 17 days after birth during the synchronized progression of pachytene spermatocytes to haploid spermatids. Vacuolation of the Sertoli’s cells is the earliest observed phenotype and is followed by reduced formation of spermatids and eventual depletion of the germ cell compartment in older mice. The nullizygous phenotype in conjunction with high-level expression of Sbf1 in premeiotic germ cells and Sertoli’s cells is consistent with a crucial role for Sbf1 in transition from diploid to haploid spermatocytes. These studies demonstrate an essential role for a pseudophosphatase and implicate signaling pathways regulated by myotubularin family proteins in spermatogenesis and germ cell differentiation

    Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    No full text
    The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate
    corecore