12 research outputs found
Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence
<p>Abstract</p> <p>Background</p> <p>Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).</p> <p>Methods</p> <p>The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software <it>Code_Saturne</it><sup>® </sup>(<url>http://www.code-saturne.org</url>) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.</p> <p>Results</p> <p>We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.</p> <p>Conclusions</p> <p>CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.</p
Airborne contamination by Pneumocystis (contribution to the characterization of the environmental risk)
PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
Bayesian development of a dose-response model for <em>Aspergillus fumagitus</em> and invasive aspergillosis
Invasive aspergillosis (IA) is a major cause of mortality in immunocompromized hosts, most often consecutive to the inhalation of spores of Aspergillus. However, the relationship between Aspergillus concentration in the air and probability of IA is not quantitatively known. In this study, this relationship was examined in a murine model of IA. Immunosuppressed Balb/c mice were exposed for 60 minutes at day 0 to an aerosol of A. fumigatus spores (Af293 strain). At day 10, IA was assessed in mice by quantitative culture of the lungs and galactomannan dosage. Fifteen separate nebulizations with varying spore concentrations were performed. Rates of IA ranged from 0% to 100% according to spore concentrations. The dose-response relationship between probability of infection and spore exposure was approximated using the exponential model and the more flexible beta-Poisson model. Prior distributions of the parameters of the models were proposed then updated with data in a Bayesian framework. Both models yielded close median dose-responses of the posterior distributions for the main parameter of the model, but with different dispersions, either when the exposure dose was the concentration in the nebulized suspension or was the estimated quantity of spores inhaled by a mouse during the experiment. The median quantity of inhaled spores that infected 50% of mice was estimated at 1.8×10(4) and 3.2×10(4) viable spores in the exponential and beta-Poisson models, respectively. This study provides dose-response parameters for quantitative assessment of the relationship between airborne exposure to the reference A. fumigatus strain and probability of IA in immunocompromized hosts
Evidence of airborne excretion of Pneumocystis carinii during infection in immunocompetent rats. Lung involvement and antibody response.
To better understand the role of immunocompetent hosts in the diffusion of Pneumocystis in the environment, airborne shedding of Pneumocystis carinii in the surrounding air of experimentally infected Sprague Dawley rats was quantified by means of a real-time PCR assay, in parallel with the kinetics of P. carinii loads in lungs and specific serum antibody titres. Pneumocystis-free Sprague Dawley rats were intratracheally inoculated at day 0 (d0) and then followed for 60 days. P. carinii DNA was detected in lungs until d29 in two separate experiments and thereafter remained undetectable. A transient air excretion of Pneumocystis DNA was observed between d14 and d22 in the first experiment and between d9 and d19 in the second experiment; it was related to the peak of infection in lungs. IgM and IgG anti-P. carinii antibody increase preceded clearance of P. carinii in the lungs and cessation of airborne excretion. In rats receiving a second challenge 3 months after the first inoculation, Pneumocystis was only detected at a low level in the lungs of 2 of 3 rats at d2 post challenge and was never detected in air samples. Anti-Pneumocystis antibody determinations showed a typical secondary IgG antibody response. This study provides the first direct evidence that immunocompetent hosts can excrete Pneumocystis following a primary acquired infection. Lung infection was apparently controlled by the immune response since fungal burdens decreased to become undetectable as specific antibodies reached high titres in serum. This immune response was apparently protective against reinfection 3 months later
Kinetics of <i>Pneumocystis carinii</i> air shedding and lung burden in Sprague Dawley rats inoculated intratracheally at day 0 with 10<sup>6</sup> cryopreserved <i>P. carinii</i> organisms.
<p><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0062155#pone-0062155-g001" target="_blank"><b>Figure 1a</b>:</a> experiment 1; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0062155#pone-0062155-g001" target="_blank"><b>Figure 1b</b>:</a> experiment 2. In each experiment, the total number of <i>P. carinii</i> organisms was determined by qPCR in lung samples (red bars) and in air samples (green bars).</p