51 research outputs found
Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of Duchenne muscular dystrophy
The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles
Novel Indirect Calorimetry Technology to Analyze Metabolism in Individual Neonatal Rodent Pups
BACKGROUND: The ability to characterize the development of metabolic function in neonatal rodents has been limited due to technological constraints. Low respiratory volumes and flows at rest pose unique problems, making it difficult to reliably measure O(2) consumption, CO(2) production, respiratory quotient (RQ), and energy expenditure (EE). Our aim was to develop and validate a commercial-grade indirect calorimetry system capable of characterizing the metabolic phenotype of individual neonatal rodents. METHODOLOGY/PRINCIPAL FINDINGS: To address this research need, we developed a novel, highly sensitive open-circuit indirect calorimetry system capable of analyzing respiratory gas exchange in a single neonatal rodent pup. Additionally, we derived an equation from known metabolic relationships to estimate inlet flow rates, improving the efficiency of data collection. To validate the neonatal rodent indirect calorimetry system and evaluate the applicability of the derived equation for predicting appropriate flow rates, we conducted a series of experiments evaluating the impact of sex, litter size, time of day (during the light phase), and ambient temperature on neonatal rat metabolic parameters. Data revealed that the only metabolic parameter influenced by litter size is a neonatal rat's RQ, with rat pups reared in a small litter (5 pups) having lower RQ's than rat pups reared in either medium (8 pups) or large (11 pups) litters. Furthermore, data showed that ambient temperature affected all metabolic parameters measured, with colder temperatures being associated with higher CO(2) production, higher O(2) consumption, and higher energy expenditure. CONCLUSION/SIGNIFICANCE: The results of this study demonstrate that the modified Panlab Oxylet system reliably assesses early postnatal metabolism in individual neonatal rodents. This system will be of paramount importance to further our understanding of processes associated with the developmental origins of adult metabolic disease
Litter Size Variation in Hypothalamic Gene Expression Determines Adult Metabolic Phenotype in Brandt's Voles (Lasiopodomys brandtii)
Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12) and small (3-4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood
Anthropometry‐based prediction of body composition in early infancy compared to air‐displacement plethysmography
Funder: Danone Nutricia ResearchFunder: EU Commission for JPI HDHL program ‘Call III Biomarkers’ for project: BioFN ‐ Biomarkers for Infant Fat Mass Development and Nutrition; Grant(s): 696295Summary: Background: Anthropometry‐based equations are commonly used to estimate infant body composition. However, existing equations were designed for newborns or adolescents. We aimed to (a) derive new prediction equations in infancy against air‐displacement plethysmography (ADP‐PEA Pod) as the criterion, (b) validate the newly developed equations in an independent infant cohort and (c) compare them with published equations (Slaughter‐1988, Aris‐2013, Catalano‐1995). Methods: Cambridge Baby Growth Study (CBGS), UK, had anthropometry data at 6 weeks (N = 55) and 3 months (N = 64), including skinfold thicknesses (SFT) at four sites (triceps, subscapular, quadriceps and flank) and ADP‐derived total body fat mass (FM) and fat‐free mass (FFM). Prediction equations for FM and FFM were developed in CBGS using linear regression models and were validated in Sophia Pluto cohort, the Netherlands, (N = 571 and N = 447 aged 3 and 6 months, respectively) using Bland–Altman analyses to assess bias and 95% limits of agreement (LOA). Results: CBGS equations consisted of sex, age, weight, length and SFT from three sites and explained 65% of the variance in FM and 79% in FFM. In Sophia Pluto, these equations showed smaller mean bias than the three published equations in estimating FM: mean bias (LOA) 0.008 (−0.489, 0.505) kg at 3 months and 0.084 (−0.545, 0.713) kg at 6 months. Mean bias in estimating FFM was 0.099 (−0.394, 0.592) kg at 3 months and −0.021 (−0.663, 0.621) kg at 6 months. Conclusions: CBGS prediction equations for infant FM and FFM showed better validity in an independent cohort at ages 3 and 6 months than existing equations
Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity
Changes in secretory cell turnover, and mitochondrial oxidative damage in the mouse mammary gland during a single prolonged lactation cycle suggest the possibility of accelerated cellular aging
Milk synthesis by the mammary gland declines during prolonged lactation despite the continued suckling stimulus and complete removal of mammary secretions. Although this process has been hypothesized to result from cellular aging there has been no reported analysis of aging markers in the lactating mammary gland. The goal of these studies was to relate lactation performance in the mouse during a single prolonged lactation cycle to changes in mammary development and mitochondrial oxidative damage. During an artificially prolonged lactation cycle, the capacity of the dams to support litter growth decreased over time. This decrease was associated with decreased mammary epithelial content. Cell proliferation, along with the percentage of mammary progenitor cells, was high during early lactation, but low during prolonged lactation. Apoptosis increased during prolonged lactation. Oxidative damage to mitochondrial DNA increased during the early postpartum period and retrained elevated through the end of the cycle. In contrast oxidative damage to mitochondrial protein was high during early lactation and decreased through mid lactation to increase again with prolonged lactation. The results suggest that a single prolonged lactation cycle may replicate on an accelerated basis some of the changes that occur with a lifetime of aging in organs possessing more stable cell populations. (c) 2006 Elsevier Inc. All rights reserved
Effects of maternal high‐fat/high sucrose diet on hepatic lipid metabolism in rat offspring
Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice
- …
