88 research outputs found

    Composite biomaterials based on sol-gel mesoporous silicate glasses: a review

    Get PDF
    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials

    Injectable thermosensitive formulation based on polyurethane hydrogel/mesoporous glasses for sustained co-delivery of functional ions and drugs

    Get PDF
    Mini-invasively injectable hydrogels are widely attracting interest as smart tools for the co-delivery of therapeutic agents targeting different aspects of tissue/organ healing (e.g., neo-angiogenesis, inflammation). In this work, copper-substituted bioactive mesoporous glasses (Cu-MBGs) were prepared as nano- and micro-particles and successfully loaded with ibuprofen through an incipient wetness method (loaded ibuprofen approx. 10% w/w). Injectable hybrid formulations were then developed by dispersing ibuprofen-loaded Cu-MBGs within thermosensitive hydrogels based on a custom-made amphiphilic polyurethane. This procedure showed almost no effects on the gelation potential (gelation at 37 °C within 3–5 min). Cu2+ and ibuprofen were co-released over time in a sustained manner with a significantly lower burst release compared to MBG particles alone (burst release reduction approx. 85% and 65% for ibuprofen and Cu2+, respectively). Additionally, released Cu2+ species triggered polyurethane chemical degradation, thus enabling a possible tuning of gel residence time at the pathological site. The overall results suggest that hybrid injectable thermosensitive gels could be successfully designed for the simultaneous localized co-delivery of multiple therapeutics

    Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release

    Get PDF
    Purpose: Coupling the potential for bone regeneration and the ability for in situ controlled drug release in a single device is a challenging field of research in bone tissue engineering; in an attempt to pursue this aim, mesoporous bioactive glass (MBG) membranes belonging to the SiO2-P2O5-CaO ternary system were produced and characterized. Methods: The glass was synthesized via a sol-gel route coupled with an evaporation-induced self-assembly process by using a non-ionic block co-polymer as a mesostructure former. MBG structure and morphology, as well as mesopores size and shape, were investigated by x-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption measurements. In vitro bioactivity was investigated by soaking MBG membranes in simulated body fluid (SBF) for different time frames. Ibuprofen was encapsulated into MBG pores and drug release kinetics in SBF were assessed. Biological tests by using SAOS-2 cells were performed to assess the material cytocompatibility. Results: The material revealed significant ability to induce hydroxyapatite formation on its surface (bioactivity). Drug release kinetics in SBF are very similar to those obtained for mesoporous silica having mesopore size comparable to that of the prepared MBG (∼5 nm). No evidence of cell viability depression was detected during in vitro culture, which demonstrates the good biological compatibility of the material. Conclusions: The easiness of tailoring and shaping, the highly bioactive and biocompatible behavior, and the drug uptake/release ability of the prepared materials may suggest their use as "smart" multifunctional grafts for bone reconstructive surgery

    Zirconia-containing radiopaque mesoporous bioactive glasses

    Get PDF
    cited By 13International audienceA radiopaque mesoporous bioactive glass (named MBGZ-7) was obtained through a combined sol-gel and evaporation induced self-assembling (EISA) route, adding zirconium propoxide to the synthesis batch as the zirconia precursor. The nitrogen sorption analysis confirmed the mesoporous nature of the glass. The assessment of in vitro bioactivity by soaking in acellular simulated body fluid (SBF) and SEM observation showed the deposition of hydroxyapatite crystals on its surface after one week. The good radiopacity level was demonstrated by comparing X-ray images of MBGZ-7 and a blank sample that did not contain radiopaque additives. It is envisaged the use of MBGZ-7 as a promising dispersed phase in composite materials for minimally invasive surgery procedures, such as injectable bone cements, in order to allow the visualization of the implant under fluoroscopic control, during both injection and follow-up. © 2014 Elsevier B.V

    The Sex-Specific Detrimental Effect of Diabetes and Gender-Related Factors on Pre-admission Medication Adherence Among Patients Hospitalized for Ischemic Heart Disease: Insights From EVA Study

    Get PDF
    Background: Sex and gender-related factors have been under-investigated as relevant determinants of health outcomes across non-communicable chronic diseases. Poor medication adherence results in adverse clinical outcomes and sex differences have been reported among patients at high cardiovascular risk, such as diabetics. The effect of diabetes and gender-related factors on medication adherence among women and men at high risk for ischemic heart disease (IHD) has not yet been fully investigated.Aim: To explore the role of sex, gender-related factors, and diabetes in pre-admission medication adherence among patients hospitalized for IHD.Materials and Methods: Data were obtained from the Endocrine Vascular disease Approach (EVA) (ClinicalTrials.gov Identifier: NCT02737982), a prospective cohort of patients admitted for IHD. We selected patients with baseline information regarding the presence of diabetes, cardiovascular risk factors, and gender-related variables (i.e., gender identity, gender role, gender relations, institutionalized gender). Our primary outcome was the proportion of pre-admission medication adherence defined through a self-reported questionnaire. We performed a sex-stratified analysis of clinical and gender-related factors associated with pre-admission medication adherence.Results: Two-hundred eighty patients admitted for IHD (35% women, mean age 70), were included. Around one-fourth of the patients were low-adherent to therapy before hospitalization, regardless of sex. Low-adherent patients were more likely diabetic (40%) and employed (40%). Sex-stratified analysis showed that low-adherent men were more likely to be employed (58 vs. 33%) and not primary earners (73 vs. 54%), with more masculine traits of personality, as compared with medium-high adherent men. Interestingly, women reporting medication low-adherence were similar for clinical and gender-related factors to those with medium-high adherence, except for diabetes (42 vs. 20%, p = 0.004). In a multivariate adjusted model only employed status was associated with poor medication adherence (OR 0.55, 95%CI 0.31–0.97). However, in the sex-stratified analysis, diabetes was independently associated with medication adherence only in women (OR 0.36; 95%CI 0.13–0.96), whereas a higher masculine BSRI was the only factor associated with medication adherence in men (OR 0.59, 95%CI 0.35–0.99).Conclusion: Pre-admission medication adherence is common in patients hospitalized for IHD, regardless of sex. However, patient-related factors such as diabetes, employment, and personality traits are associated with adherence in a sex-specific manner

    Mimicking the inorganic component of bone through mesoporous hydroxyapatite and mesoporous bioactive glasses

    No full text
    This work represents the initial phase of the ERC Boost Project whose aim is the fabrication of a smart scaffold that mimics the natural bone chemistry, structure and topography for the treatment of osteoporotic fractures. Since human bone is composed of an organic matrix (mainly type I collagen) and an inorganic phase made up by nanometric crystals of hydroxyapatite, the starting material chosen for the project is a composite material made by collagen, mesoporous hydroxyapatite (MHA) and/or mesoporous bioactive glasses (MBG). Mesoporous materials have exceptional textural properties (high surface area, high pore volume and ordered mesoporosity) that lead to an improved reactivity in body fluids, making them particularly suitable for bone tissue regeneration

    In situ infrared study of SBA-15 functionalized with carboxylic groups incorporated by co-condensation route

    No full text
    Two samples of SBA-15 mesoporous silica with a different content of carboxylic groups (-COOH) were prepared by a co-condensation route, using 4-(triethoxysilil)butyronitrile as the organosilane agent, then treating the samples with sulfuric acid, which removes the template and simultaneously hydrolyses the -CN to -COOH groups, as shown by IR spectroscopy. Both incorporation of organosilane agents and subsequent acid treatment do not affect the ordered SBA-15 structure. The proton-donor ability of carboxylic groups, as well their accessibility to reactants, has been studied in the IR by dosing ammonia, which forms reversibly COOgroups and NH4 + ions. The related equilibrium constants have been determined by elaboration of IR data. Outgassing the samples at progressively increasing temperatures destabilizes to an increasing extent the ammonium/carboxylate ion pair, because of the decrease in surface polarity brought about by dehydration: this decreases the related equilibrium constants. The amount of carboxylic groups undergoing reaction appears instead to be constant with dehydration, and to coincide with the whole population of COOH groups. Titration with alkali solutions yielded surface concentrations for the two samples of ca. 1.0 and 0.45 COOH/nm2. Proportionality between the surface concentrations and the intensities of the CdO IR band is observed: this suggests that COOH groups are noninteracting with each other and allows the computation of the related extinction molar coefficien

    Mesoporous SBA-15 silica impregnated with Reichardt's dye: a material optically responding to NH(3)

    No full text
    SBA-15 mesoporous silica system impregnated with Reichardt's dye is white if still covered with hydroxyls; a pink colouration is observed by exposing the sample to NH3 and primary amines. The process is fully reversible. The mechanism of colour change is discussed, and such systems are proposed as possible ammonia sensors
    • …
    corecore