190 research outputs found

    Monte Carlo simulations of soft proton flares: testing the physics with XMM-Newton

    Get PDF
    Low energy protons (<100-300 keV) in the Van Allen belt and the outer regions can enter the field of view of X-ray focusing telescopes, interact with the Wolter-I optics, and reach the focal plane. The use of special filters protects the XMM-Newton focal plane below an altitude of 70000 km, but above this limit the effect of soft protons is still present in the form of sudden flares in the count rate of the EPIC instruments, causing the loss of large amounts of observing time. We try to characterize the input proton population and the physics interaction by simulating, using the BoGEMMS framework, the proton interaction with a simplified model of the X-ray mirror module and the focal plane, and comparing the result with a real observation. The analysis of ten orbits of observations of the EPIC/pn instrument show that the detection of flares in regions far outside the radiation belt is largely influenced by the different orientation of the Earth's magnetosphere respect with XMM-Newton's orbit, confirming the solar origin of the soft proton population. The Equator-S proton spectrum at 70000 km altitude is used for the proton population entering the optics, where a combined multiple and Firsov scattering is used as physics interaction. If the thick filter is used, the soft protons in the 30-70 keV energy range are the main contributors to the simulated spectrum below 10 keV. We are able to reproduce the proton vignetting observed in real data-sets, with a 50\% decrease from the inner to the outer region, but a maximum flux of 0.01 counts cm-2 s-1 keV-1 is obtained below 10 keV, about 5 times lower than the EPIC/MOS detection and 100 times lower than the EPIC/pn one. Given the high variability of the flare intensity, we conclude that an average spectrum, based on the analysis of a full season of soft proton events is required to compare Monte Carlo simulations with real events

    ASTRI Mini-Array User Requirements of the SCADA Operator Human Machine Interface System

    Get PDF
    This present document defines the user requirements of the Operator Human Machine Interface (HMI) and describes the product in terms of functions, interfaces, and user characteristic

    Validation of the HITOMI SXS particle background by Geant4

    Get PDF
    The HITOMI/SXS instrument, despite its short life, provided more than 300 ks of Non X-ray Background (NXB) data and a unique opportunity for validating the Geant4 simulation of an X-ray micro- calorimeter background against in-flight real data. While HITOMI was flown in low Earth orbit (LEO), hence we expect a different composition for the background source population, the ability to reproduce the NXB spectra detected by the anti-coincidence and calorimeter instruments validated the Geant4 set-up for the X-IFU background simulation and that, in the specific, the X-IFU background evaluation is not missing any unexpected interaction affecting X-ray micro-calorimeters. We present here the Geant4 configuration (e.g. physics models, secondary production cut-offs), the models describing the space radiation environment, the simulated anti-coincidence and SXS X-ray spectra, and the comparison with observations

    Parallel waveform extraction algorithms for the Cherenkov Telescope Array Real-Time Analysis

    Get PDF
    The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area and field of view, the CTA observatory will be characterized by an unprecedented sensitivity to transient flaring gamma-ray phenomena compared to both current ground (e.g. MAGIC, VERITAS, H.E.S.S.) and space (e.g. Fermi) gamma-ray telescopes. In order to trigger the astrophysics community for follow-up observations, or being able to quickly respond to external science alerts, a fast analysis pipeline is crucial. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a fast and automated science alert trigger system, becoming a key system of the CTA observatory. Among the CTA design key requirements to the RTA system, the most challenging is the generation of alerts within 30 seconds from the last acquired event, while obtaining a flux sensitivity not worse than the one of the final analysis by more than a factor of 3. A dedicated software and hardware architecture for the RTA pipeline must be designed and tested. We present comparison of OpenCL solutions using different kind of devices like CPUs, Graphical Processing Unit (GPU) and Field Programmable Array (FPGA) cards for the Real-Time data reduction of the Cherenkov Telescope Array (CTA) triggered data.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Geant4 simulations of soft proton scattering in X-ray optics. A tentative validation using laboratory measurements

    Full text link
    Low energy protons (< 300 keV) can enter the field of view of X-ray space telescopes, scatter at small incident angles, and deposit energy on the detector, causing intense background flares at the focal plane or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance of future X-ray telescopes as the ESA ATHENA mission. For the first time the Remizovich model, in the approximation of no energy losses, is implemented top of the Geant4 release 10.2. Both the new scattering physics and the built-in Coulomb scattering are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funneling, and affirm that Coulomb single scattering can represent, until further measurements, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.Comment: submitted to Experimental Astronom

    The Cherenkov Telescope array on-site integral sensitivity: observing the Crab

    Get PDF
    The Cherenkov Telescope Array (CTA) is the future large observatory in the very high energy (VHE) domain. Operating from 20 GeV to 300 TeV, it will be composed of tens of Imaging Air Cherenkov Telescopes (IACTs) displaced in a large area of a few square kilometers in both the southern and northern hemispheres. Thanks to the wide energy coverage and the tremendous boost in effective area (10 times better than the current IACTs), for the first time a VHE observatory will be able to detect transient phenomena in short exposures. The CTA/DATA On-Site Analysis (OSA) is the system devoted to the development of dedicated pipelines and algorithms to be used at the CTA site for the reconstruction, data quality monitoring, science monitoring and realtime science alerting during observations. The minimum exposure required to issue a science alert is not a general requirement of the observatory but is a function of the astrophysical object under study, because the ability to detect a given source is determined by the integral sensitivity which, in addition to the CTA Monte Carlo simulations, providing the energy-dependent instrument response (e.g. the effective area and the background rate), requires the spectral distribution of the science target. The OSA integral sensitivity is computed here for the most studied source at Gamma-rays, the Crab Nebula, for a set of exposures ranging from 1000 seconds to 50 hours, using the full CTA Southern array. The reason for the Crab Nebula selection as the first example of OSA integral sensitivity is twofold: (i) this source is characterized by a broad spectrum covering the entire CTA energy range; (ii) it represents, at the time of writing, the standard candle in VHE and it is often used as unit for the IACTs sensitivity. The effect of different Crab Nebula emission models on the CTA integral sensitivity is evaluated, to emphasize the need for representative spectra of the CTA science targets in the evaluation of the OSA use cases. Using the most complete model as input to the OSA integral sensitivity, we obtain a significant detection of the Crab nebula (about 10% of flux) even for a 1000 second exposure, for an energy threshold less than 10 TeV

    CTA IRF current data format and model - missing features and open issues

    Get PDF
    This document reports open points, issues and proposed new features of the CTA IRF data format collected by the ASWG IRF task group while mapping the Prod5 IRF data format against the GADF1 one, and its review by the ASWG members during the ASWG call on the 28th of April 2022

    Machine-learning-based Prediction of Gait Events from EMG in Cerebral Palsy Children

    Get PDF
    Machine-learning techniques are suitably employed for gait-event prediction from only surface electromyographic (sEMG) signals in control subjects during walking. Nevertheless, a reference approach is not available in cerebral-palsy hemiplegic children, likely due to the large variability of foot-floor contacts. This study is designed to investigate a machine-learning-based approach, specifically developed to binary classify gait events and to predict heel-strike (HS) and toe-off (TO) timing from sEMG signals in hemiplegic-child walking. To this objective, sEMG signals are acquired from five hemiplegic-leg muscles in nearly 2500 strides from 20 hemiplegic children, acknowledged as Winters' group 1 and 2. sEMG signals, segmented in overlapping windows of 600 samples (pace = 5 samples), are used to train a multi-layer perceptron model. Intra-subject and inter-subject experimental settings are tested. The best-performing intra-subject approach is able to provide in the hemiplegic population a mean classification accuracy () of 0.97±0.01 and a suitable prediction of HS and TO events, in terms of average mean absolute error (MAE, 14.8±3.2 ms for HS and 17.6±4.2 ms for TO) and F1-score (0.95±0.03 for HS and 0.92±0.07 for TO). These results outperform previous sEMG-based attempts in cerebral-palsy populations and are comparable with outcomes achieved by reference approaches in control populations. In conclusion, the findings of the study prove the feasibility of neural networks in predicting the two main gait events using surface EMG signals, also in condition of high variability of the signal to predict as in hemiplegic cerebral palsy
    • …
    corecore