3 research outputs found

    Fraisinib: a calixpyrrole derivative reducing A549 cell-derived NSCLC tumor in vivo acts as a ligand of the glycine-tRNA synthase, a new molecular target in oncology

    Get PDF
    Background and purpose: Lung cancer is the leading cause of death in both men and women, constituting a major public health problem worldwide. Non-small-cell lung cancer accounts for 85%–90% of all lung cancers. We propose a compound that successfully fights tumor growth in vivo by targeting the enzyme GARS1.Experimental approach: We present an in-depth investigation of the mechanism through which Fraisinib [meso-(p-acetamidophenyl)-calix(4)pyrrole] affects the human lung adenocarcinoma A549 cell line. In a xenografted model of non-small-cell lung cancer, Fraisinib was found to reduce tumor mass volume without affecting the vital parameters or body weight of mice. Through a computational approach, we uncovered that glycyl-tRNA synthetase is its molecular target. Differential proteomics analysis further confirmed that pathways regulated by Fraisinib are consistent with glycyl-tRNA synthetase inhibition.Key results: Fraisinib displays a strong anti-tumoral potential coupled with limited toxicity in mice. Glycyl-tRNA synthetase has been identified and validated as a protein target of this compound. By inhibiting GARS1, Fraisinib modulates different key biological processes involved in tumoral growth, aggressiveness, and invasiveness.Conclusion and implications: The overall results indicate that Fraisinib is a powerful inhibitor of non-small-cell lung cancer growth by exerting its action on the enzyme GARS1 while displaying marginal toxicity in animal models. Together with the proven ability of this compound to cross the blood–brain barrier, we can assess that Fraisinib can kill two birds with one stone: targeting the primary tumor and its metastases “in one shot.” Taken together, we suggest that inhibiting GARS1 expression and/or GARS1 enzymatic activity may be innovative molecular targets for cancer treatment

    The multicenter ITALIAN trial assess the performance of FDG-PET/CT related to pre-test cancer risk in patients with solitary pulmonary nodules and introduces a segmental thoracic diagnostic strategy

    No full text
    The Italian Tailored Assessment of Lung Indeterminate Accidental Nodule (ITALIAN) trial is a trial drawn to determine the performance of 18F-FDG-PET/CT in patients with solitary pulmonary nodules (SPN) , stratified for different kind of risk. An additional end-point was to compare the diagnostic information and estimated dosimetry, provided by a segmental PET/CT (s-PET/CT) acquisition instead of a whole body PET/CT (wb-PET/CT), in order to evaluate if segmental thoracic PET/CT can be used in patients with SPN

    Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: A translational18F-FDG PET/CT observation

    Get PDF
    The present translational study aimed to verify whether serial 18FFDG PET/CT predicts doxorubicin cardiotoxicity. Methods: Fifteen athymic mice were treated intravenously with saline (n = 5) or with 5 or 7.5 mg of doxorubicin per kilogram (n = = each) and underwent dynamic small-animal PET beforehand and afterward to estimate left ventricular (LV) metabolic rate of glucose (MRGlu). Thereafter, we retrospectively identified 69 patients who had been successfully treated with a regimen of doxorubicin, bleomycin, vinblastine, and dacarbazine for Hodgkin disease (HD) and had undergone 4 consecutive18F-FDG PET/CT scans. Volumes of interest were drawn on LV myocardium to quantify mean SUV. All patients were subsequently interviewed by telephone (median follow-up, 30 mo); 36 of them agreed to undergo electrocardiography and transthoracic echocardiography. Results: In mice, LV MRGlu was 17.9 \uc2\ub1 4.4 nmol \ue2\u80\ua2 min21 \uc3\u97 g21 at baseline. Doxorubicin selectively and dose-dependently increased this value in the standard-dose (27.9 \uc2\ub1 9 nmol \uc3\u97 min21 \uc3\u97 g-1, P < 0.05 vs. controls) and high-dose subgroups (37.2 6 7.8 nmol \uc3\u97 min21 \uc3\u97 g-1, P < 0.01 vs. controls, P < 0.05 vs. standard-dose). In HD patients, LV SUV showed a progressive increase during doxorubicin treatment that persisted at follow-up. New-onset cardiac abnormalities appeared in 11 of 36 patients (31%). In these subjects, pretherapy LV SUV was markedly lower with respect to the remaining patients (1.53 \uc2\ub1 0.9 vs. 3.34 \uc2\ub1 2.54, respectively, P < 0.01). Multivariate analysis confirmed the predictive value of baseline LV SUV for subsequent cardiac abnormalities. Conclusion: Doxorubicin dosedependently increases LV MRGlu, particularly in the presence of low baseline18F-FDG uptake. These results imply that low myocardial18F-FDG uptake before the initiation of doxorubicin chemotherapy in HD patients may predict the development of chemotherapy-induced cardiotoxicity, suggesting that prospective clinical trials are warranted to test this hypothesis
    corecore