167 research outputs found
Transformation Rules for Locally Stratified Constraint Logic Programs
We propose a set of transformation rules for constraint logic programs with
negation. We assume that every program is locally stratified and, thus, it has
a unique perfect model. We give sufficient conditions which ensure that the
proposed set of transformation rules preserves the perfect model of the
programs. Our rules extend in some respects the rules for logic programs and
constraint logic programs already considered in the literature and, in
particular, they include a rule for unfolding a clause with respect to a
negative literal.Comment: To appear in: M. Bruynooghe, K.-K. Lau (Eds.) Program Development in
Computational Logic, Lecture Notes in Computer Science, Springe
La Carta Magna en la historia del constitucionalismo
La Carta Magna ha sido objeto de una interpretación continuista que la ha concebido como enunciación originaria de los derechos fundamentales. La lectura propuesta en este ensayo la entiende como contrato de dominación para el gobierno de un territorio, en sintonía con otros documentos análogos coetáneos. La Carta Magna constituiría así un tipo de gobernación basado en el acuerdo entre el señor y las fuerzas activas del territorio, fundado en unos principios fundamentales definidores de la comunidad política y dotada de instrumentos para garantizar su inviolabilidad.From the historical continuity perspective, Magna Carta's has been interpreted as Englishmen original declaration of fundamental rights. This essay understands it in the light of analogous contemporary documents as a contract of domination in order to rule a territory. Thus, Magna Carta would be a type of governance based on the agreement between Lord and Barons, founded on the fundamental principies defining the political community, provided with instruments to guarantee its inviolability
Program transformation for development, verification, and synthesis of programs
This paper briefly describes the use of the program transformation methodology for the development of correct and efficient programs. In particular, we will refer to the case of constraint logic programs and, through some examples, we will show how by program transformation, one can improve, synthesize, and verify programs
Proving theorems by program transformation
In this paper we present an overview of the unfold/fold proof method, a method for proving theorems about programs, based on program transformation. As a metalanguage for specifying programs and program properties we adopt constraint logic programming (CLP), and we present a set of transformation rules (including the familiar unfolding and folding rules) which preserve the semantics of CLP programs. Then, we show how program transformation strategies can be used, similarly to theorem proving tactics, for guiding the application of the transformation rules and inferring the properties to be proved. We work out three examples: (i) the proof of predicate equivalences, applied to the verification of equality between CCS processes, (ii) the proof of first order formulas via an extension of the quantifier elimination method, and (iii) the proof of temporal properties of infinite state concurrent systems, by using a transformation strategy that performs program specialization
Generalization Strategies for the Verification of Infinite State Systems
We present a method for the automated verification of temporal properties of
infinite state systems. Our verification method is based on the specialization
of constraint logic programs (CLP) and works in two phases: (1) in the first
phase, a CLP specification of an infinite state system is specialized with
respect to the initial state of the system and the temporal property to be
verified, and (2) in the second phase, the specialized program is evaluated by
using a bottom-up strategy. The effectiveness of the method strongly depends on
the generalization strategy which is applied during the program specialization
phase. We consider several generalization strategies obtained by combining
techniques already known in the field of program analysis and program
transformation, and we also introduce some new strategies. Then, through many
verification experiments, we evaluate the effectiveness of the generalization
strategies we have considered. Finally, we compare the implementation of our
specialization-based verification method to other constraint-based model
checking tools. The experimental results show that our method is competitive
with the methods used by those other tools. To appear in Theory and Practice of
Logic Programming (TPLP).Comment: 24 pages, 2 figures, 5 table
Verification of Imperative Programs by Constraint Logic Program Transformation
We present a method for verifying partial correctness properties of
imperative programs that manipulate integers and arrays by using techniques
based on the transformation of constraint logic programs (CLP). We use CLP as a
metalanguage for representing imperative programs, their executions, and their
properties. First, we encode the correctness of an imperative program, say
prog, as the negation of a predicate 'incorrect' defined by a CLP program T. By
construction, 'incorrect' holds in the least model of T if and only if the
execution of prog from an initial configuration eventually halts in an error
configuration. Then, we apply to program T a sequence of transformations that
preserve its least model semantics. These transformations are based on
well-known transformation rules, such as unfolding and folding, guided by
suitable transformation strategies, such as specialization and generalization.
The objective of the transformations is to derive a new CLP program TransfT
where the predicate 'incorrect' is defined either by (i) the fact 'incorrect.'
(and in this case prog is not correct), or by (ii) the empty set of clauses
(and in this case prog is correct). In the case where we derive a CLP program
such that neither (i) nor (ii) holds, we iterate the transformation. Since the
problem is undecidable, this process may not terminate. We show through
examples that our method can be applied in a rather systematic way, and is
amenable to automation by transferring to the field of program verification
many techniques developed in the field of program transformation.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
Enhancing Predicate Pairing with Abstraction for Relational Verification
Relational verification is a technique that aims at proving properties that
relate two different program fragments, or two different program runs. It has
been shown that constrained Horn clauses (CHCs) can effectively be used for
relational verification by applying a CHC transformation, called predicate
pairing, which allows the CHC solver to infer relations among arguments of
different predicates. In this paper we study how the effects of the predicate
pairing transformation can be enhanced by using various abstract domains based
on linear arithmetic (i.e., the domain of convex polyhedra and some of its
subdomains) during the transformation. After presenting an algorithm for
predicate pairing with abstraction, we report on the experiments we have
performed on over a hundred relational verification problems by using various
abstract domains. The experiments have been performed by using the VeriMAP
transformation and verification system, together with the Parma Polyhedra
Library (PPL) and the Z3 solver for CHCs.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Proving Correctness of Imperative Programs by Linearizing Constrained Horn Clauses
We present a method for verifying the correctness of imperative programs
which is based on the automated transformation of their specifications. Given a
program prog, we consider a partial correctness specification of the form
prog , where the assertions and are
predicates defined by a set Spec of possibly recursive Horn clauses with linear
arithmetic (LA) constraints in their premise (also called constrained Horn
clauses). The verification method consists in constructing a set PC of
constrained Horn clauses whose satisfiability implies that prog
is valid. We highlight some limitations of state-of-the-art
constrained Horn clause solving methods, here called LA-solving methods, which
prove the satisfiability of the clauses by looking for linear arithmetic
interpretations of the predicates. In particular, we prove that there exist
some specifications that cannot be proved valid by any of those LA-solving
methods. These specifications require the proof of satisfiability of a set PC
of constrained Horn clauses that contain nonlinear clauses (that is, clauses
with more than one atom in their premise). Then, we present a transformation,
called linearization, that converts PC into a set of linear clauses (that is,
clauses with at most one atom in their premise). We show that several
specifications that could not be proved valid by LA-solving methods, can be
proved valid after linearization. We also present a strategy for performing
linearization in an automatic way and we report on some experimental results
obtained by using a preliminary implementation of our method.Comment: To appear in Theory and Practice of Logic Programming (TPLP),
Proceedings of ICLP 201
- …