167 research outputs found

    Transformation Rules for Locally Stratified Constraint Logic Programs

    Full text link
    We propose a set of transformation rules for constraint logic programs with negation. We assume that every program is locally stratified and, thus, it has a unique perfect model. We give sufficient conditions which ensure that the proposed set of transformation rules preserves the perfect model of the programs. Our rules extend in some respects the rules for logic programs and constraint logic programs already considered in the literature and, in particular, they include a rule for unfolding a clause with respect to a negative literal.Comment: To appear in: M. Bruynooghe, K.-K. Lau (Eds.) Program Development in Computational Logic, Lecture Notes in Computer Science, Springe

    La Carta Magna en la historia del constitucionalismo

    Get PDF
    La Carta Magna ha sido objeto de una interpretación continuista que la ha concebido como enunciación originaria de los derechos fundamentales. La lectura propuesta en este ensayo la entiende como contrato de dominación para el gobierno de un territorio, en sintonía con otros documentos análogos coetáneos. La Carta Magna constituiría así un tipo de gobernación basado en el acuerdo entre el señor y las fuerzas activas del territorio, fundado en unos principios fundamentales definidores de la comunidad política y dotada de instrumentos para garantizar su inviolabilidad.From the historical continuity perspective, Magna Carta's has been interpreted as Englishmen original declaration of fundamental rights. This essay understands it in the light of analogous contemporary documents as a contract of domination in order to rule a territory. Thus, Magna Carta would be a type of governance based on the agreement between Lord and Barons, founded on the fundamental principies defining the political community, provided with instruments to guarantee its inviolability

    Program transformation for development, verification, and synthesis of programs

    Get PDF
    This paper briefly describes the use of the program transformation methodology for the development of correct and efficient programs. In particular, we will refer to the case of constraint logic programs and, through some examples, we will show how by program transformation, one can improve, synthesize, and verify programs

    Proving theorems by program transformation

    Get PDF
    In this paper we present an overview of the unfold/fold proof method, a method for proving theorems about programs, based on program transformation. As a metalanguage for specifying programs and program properties we adopt constraint logic programming (CLP), and we present a set of transformation rules (including the familiar unfolding and folding rules) which preserve the semantics of CLP programs. Then, we show how program transformation strategies can be used, similarly to theorem proving tactics, for guiding the application of the transformation rules and inferring the properties to be proved. We work out three examples: (i) the proof of predicate equivalences, applied to the verification of equality between CCS processes, (ii) the proof of first order formulas via an extension of the quantifier elimination method, and (iii) the proof of temporal properties of infinite state concurrent systems, by using a transformation strategy that performs program specialization

    Generalization Strategies for the Verification of Infinite State Systems

    Full text link
    We present a method for the automated verification of temporal properties of infinite state systems. Our verification method is based on the specialization of constraint logic programs (CLP) and works in two phases: (1) in the first phase, a CLP specification of an infinite state system is specialized with respect to the initial state of the system and the temporal property to be verified, and (2) in the second phase, the specialized program is evaluated by using a bottom-up strategy. The effectiveness of the method strongly depends on the generalization strategy which is applied during the program specialization phase. We consider several generalization strategies obtained by combining techniques already known in the field of program analysis and program transformation, and we also introduce some new strategies. Then, through many verification experiments, we evaluate the effectiveness of the generalization strategies we have considered. Finally, we compare the implementation of our specialization-based verification method to other constraint-based model checking tools. The experimental results show that our method is competitive with the methods used by those other tools. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 24 pages, 2 figures, 5 table

    Verification of Imperative Programs by Constraint Logic Program Transformation

    Full text link
    We present a method for verifying partial correctness properties of imperative programs that manipulate integers and arrays by using techniques based on the transformation of constraint logic programs (CLP). We use CLP as a metalanguage for representing imperative programs, their executions, and their properties. First, we encode the correctness of an imperative program, say prog, as the negation of a predicate 'incorrect' defined by a CLP program T. By construction, 'incorrect' holds in the least model of T if and only if the execution of prog from an initial configuration eventually halts in an error configuration. Then, we apply to program T a sequence of transformations that preserve its least model semantics. These transformations are based on well-known transformation rules, such as unfolding and folding, guided by suitable transformation strategies, such as specialization and generalization. The objective of the transformations is to derive a new CLP program TransfT where the predicate 'incorrect' is defined either by (i) the fact 'incorrect.' (and in this case prog is not correct), or by (ii) the empty set of clauses (and in this case prog is correct). In the case where we derive a CLP program such that neither (i) nor (ii) holds, we iterate the transformation. Since the problem is undecidable, this process may not terminate. We show through examples that our method can be applied in a rather systematic way, and is amenable to automation by transferring to the field of program verification many techniques developed in the field of program transformation.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Enhancing Predicate Pairing with Abstraction for Relational Verification

    Full text link
    Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verification by applying a CHC transformation, called predicate pairing, which allows the CHC solver to infer relations among arguments of different predicates. In this paper we study how the effects of the predicate pairing transformation can be enhanced by using various abstract domains based on linear arithmetic (i.e., the domain of convex polyhedra and some of its subdomains) during the transformation. After presenting an algorithm for predicate pairing with abstraction, we report on the experiments we have performed on over a hundred relational verification problems by using various abstract domains. The experiments have been performed by using the VeriMAP transformation and verification system, together with the Parma Polyhedra Library (PPL) and the Z3 solver for CHCs.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Proving Correctness of Imperative Programs by Linearizing Constrained Horn Clauses

    Full text link
    We present a method for verifying the correctness of imperative programs which is based on the automated transformation of their specifications. Given a program prog, we consider a partial correctness specification of the form {φ}\{\varphi\} prog {ψ}\{\psi\}, where the assertions φ\varphi and ψ\psi are predicates defined by a set Spec of possibly recursive Horn clauses with linear arithmetic (LA) constraints in their premise (also called constrained Horn clauses). The verification method consists in constructing a set PC of constrained Horn clauses whose satisfiability implies that {φ}\{\varphi\} prog {ψ}\{\psi\} is valid. We highlight some limitations of state-of-the-art constrained Horn clause solving methods, here called LA-solving methods, which prove the satisfiability of the clauses by looking for linear arithmetic interpretations of the predicates. In particular, we prove that there exist some specifications that cannot be proved valid by any of those LA-solving methods. These specifications require the proof of satisfiability of a set PC of constrained Horn clauses that contain nonlinear clauses (that is, clauses with more than one atom in their premise). Then, we present a transformation, called linearization, that converts PC into a set of linear clauses (that is, clauses with at most one atom in their premise). We show that several specifications that could not be proved valid by LA-solving methods, can be proved valid after linearization. We also present a strategy for performing linearization in an automatic way and we report on some experimental results obtained by using a preliminary implementation of our method.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201
    corecore