13 research outputs found

    Results of Fitting a Logistic Regression Model to Elephant and Human Presence/Absence Data for Each MIKE Survey Site Separately

    No full text
    <p>Distance to road (in kilometres) was used as the explanatory variable (except for probability of elephant occurrence for Minkébé where modelling is not required due to an effective probability of 1). Elephant data are shown to the left, and human data to the right. The observations and regression lines are colour-coded by site, and the 95% confidence interval is indicated by the dotted lines. The probability of elephant occurrence is significantly related to distance to road for all sites except Minkébé and Salonga. Due to the imprecision in the data and other influences not captured by distance to road, the probability of human presence is only significantly related to distance to road for the Ndoki-Dzanga site for the separate site analyses.</p

    Results of Fitting a Logistic Regression Model to Elephant and Human Presence/Absence Megatransect Data

    No full text
    <p>Distance to road (in kilometres) and location within or outside the protected areas were used as explanatory variables. (A) shows the elephant data, and (B) shows the human data. The observations and regression lines are colour-coded to correspond to within or outside the protected areas and the dashed line shows the regression line with only the distance to road covariate. The covariates distance to road and location within or outside the protected areas are significant for both elephant and human probability of occurrence.</p

    Estimated Conditional Dependence of Elephant Dung-Pile Numbers on Distance from Road (in Kilometres) and Distance to the Nearest Protected Area Boundary (in Kilometres)

    No full text
    <p>(A) shows the effect of distance from the road, and (B) shows the effect of distance to the nearest boundary of the protected area. Negative distances indicate locations inside protected areas. Estimates (solid lines) and confidence intervals (dashed lines), with a rug plot indicating observation density along the bottom of the plot, are shown. To avoid over-fitting, the degrees of freedom for this model were restricted to 3 for both covariates.</p

    Estimated Conditional Dependence of Elephant Dung-Pile Numbers on Distance to Road (in Kilometres)

    No full text
    <p>Estimates (solid line) and confidence intervals (dashed lines), with a rug plot indicating observation density along the bottom of the plot, are shown. To avoid over-fitting, the degrees of freedom were restricted to two for the distance-to-road covariate.</p

    Results of Fitting a Logistic Regression Model to Elephant and Human Presence/Absence Data Pooled across MIKE Survey Sites

    No full text
    <p>Distance to road (in kilometres) and site were used as explanatory variables. (A) shows the elephant data, and (B) shows the human data. The observations and regression lines are colour-coded by site and the dashed line shows the regression line without the inclusion of site as a covariate. The covariates distance to road and site are significant for both elephant and human probability of occurrence. The dissimilarity between sites is more pronounced when modelling the probability of elephant occurrence.</p

    Estimated change in elephant dung density (/km<sup>2</sup>) distribution during 2002–2011 across the Central African forests.

    No full text
    <p>Results are shown as a percentage of the total area of potential elephant habitat overall (A & B) and by country (C & D) for the predictive model with variables: (A & C) survey year, Human Influence Index, corruption and the presence/absence of guards, and (B & D) survey year, proximity to road, human population density, corruption and the presence/absence of guards. The dung density (per km<sup>2</sup>) intervals are unequal and correspond to the following elephant population categories: extremely low density (0–100), very low (100–250), low (250–500), medium (500–1,000), high (1,000–3,000) and very high (3,000–7,500). With the loss of very high elephant populations in 2011, there is a significant shift into the lower density intervals over the nine years.</p

    Elephant dung density and range reduction across the Central African forests.

    No full text
    <p>Predictions are shown for (A) 2002 and (B) 2011 for the model with variables: survey year∧, Human Influence Index***, corruption*** and the presence/absence of guards***, and (C) 2002 and (D) 2011 for the model with variables: survey year∧, proximity to road∧, human population density***, corruption*** and the presence/absence of guards*** (P-values are: ‘***’ <0.001 and ‘∧’ <0.1). Increasingly darker shades of green correspond to higher densities, grey represents extremely low elephant density range (the first interval: 0–100 elephant dung piles/km<sup>2</sup>) and white is non-habitat (80 survey sites outlined in red). Cutpoints are: 0; 100; 250; 500; 1,000; 1,500; 3,000; 5,000; and 7,500 dung piles/km<sup>2</sup>. Countries 1–5 are: Cameroon; Central African Republic; Republic of Congo; DRC; Gabon.</p
    corecore