543 research outputs found

    Investigation of Known Genetic Mutations of Arabian Horses in Egyptian Arabian Foals with Juvenile Idiopathic Epilepsy.

    Get PDF
    BackgroundThe carrier status of lavender foal syndrome (LFS), cerebellar abiotrophy (CA), severe combined immunodeficiency (SCID), and occipitoatlantoaxial malformation (OAAM1) in foals with juvenile idiopathic epilepsy (JIE) is unknown.Hypothesis/objectivesTo determine the carrier status of LFS, CA, SCID, and OAAM1 in foals with JIE.AnimalsTen foals with JIE.Materials and methodsArchived DNA samples were tested for known genetic mutations causing LFS, CA, SCID, and OAAM1. The inclusion criteria consisted of having been diagnosed with JIE by ruling out other causes of seizures in foals and supported by electroencephalographic examination.ResultsTen Egyptian Arabian horses (5 females and 5 males) were phenotyped as foals with JIE by electroencephalography (EEG). All foals were negative for the genetic mutations that cause LFS, CA, SCID, and OAAM1 except for 1 foal that was a carrier of CA.Conclusions and clinical importanceJuvenile idiopathic epilepsy of Egyptian Arabian foals and LFS appear to be phenotypically and genetically distinct disorders. There was no apparent association between JIE and LFS, CA, SCID, and OAAM1

    Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era.

    Get PDF
    The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite-free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high-quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species

    Strengthening Border Families: Community and Policy Responses to Serving Immigrant Families with Young Children in Doña Ana County, NM

    Get PDF
    This report details the results and recommendations of the first phase of a community-based participatory research project which aimed to explore the accessibility and quality of services as well as barriers and facilitators to service receipt among immigrant families with young children in the New Mexico borderlands

    Strengthening Border Families: Data Highlights from Interviews & Focus Groups With Immigrant Caregivers

    Get PDF
    This report details key findings of the third phase of a multiphase mixed-methods study that aims to: 1) understand the accessibility and quality of services for immigrant families with young children in Doña Ana County both before and during the COVID-19 pandemic; 2) identify barriers and facilitators to service access for these families; and 3) uplift community-informed practice and policy solutions to improve equity in access to key supportive services for immigrant families with young children in southern New Mexico and across the state

    Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune-Mediated Myositis.

    Get PDF
    BackgroundMajor histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune-mediated myositis (IMM) of humans and dogs and in dysferlin-deficient muscular dystrophy.Hypothesis/objectivesTo determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM.AnimalsTwenty-one IMM horses of Quarter Horse-related breeds, 3 healthy and 6 disease controls (3 pasture myopathy, 3 amylase-resistant polysaccharide storage myopathy [PSSM]).MethodsImmunohistochemical staining for MHC I, II, and CD4+, CD8+, CD20+ lymphocytes was performed on archived muscle of IMM and control horses. Scores were given for MHC I, II, and lymphocytic subtypes. Immunofluorescent staining for dysferlin, dystrophin, and a-sarcoglycan was performed.ResultsSarcolemmal MHC I and II expression was detected in 17/21 and 15/21 of IMM horses, respectively, and in specific fibers of PSSM horses, but not healthy or pasture myopathy controls. The CD4+, CD8+, and CD20+ cells were present in 20/21 IMM muscles with CD4+ predominance in 10/21 and CD8+ predominance in 6/21 of IMM horses. Dysferlin, dystrophin, and a-sarcoglycan staining were similar in IMM and control muscles.Conclusions and clinical importanceDeficiencies of dysferlin, dystrophin, and a-sarcoglycan are not associated with IMM. Sarcolemmal MHC I and II expression in a proportion of myofibers of IMM horses in conjunction with lymphocytic infiltration supports an immune-mediated etiology for IMM. The MHC expression also occured in specific myofibers in PSSM horses in the absence of lymphocytic infiltrates
    • …
    corecore