197 research outputs found

    Armed and accurate: engineering cytotoxic T cells for eradication of leukemia

    Get PDF
    Translational medicine depends on a rapid and efficient exchange of results between the bench and the bedside. A recent example from the field of cancer immunotherapy highlights the essential nature of this exchange. Methods have been developed to convert a patient's cytotoxic T cells into efficient and specific killers of cancer cells in patients with leukemia. By using recombinant DNA techniques, a lentiviral vector was constructed to express chimeric antigen receptors in cytotoxic T cells from patients with advanced chronic lymphocytic leukemia. The purpose of the chimeric receptors was to direct the cytotoxic T cell activity against cells causing the cancer. The effect of infusing the engineered T cells back into the cancer patients was tested in a Phase I trial at the University of Pennsylvania, and the initial results were described in two articles from the research team of Dr. Carl June. The remarkable success of this trial should energize further applications of biotechnology in the development of new cancer immunotherapies

    Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    Get PDF
    BackgroundT cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s.MethodsPatients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 1010 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72.ResultsFourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72 binding domain of humanized CC49, reflecting an anti-CAR immune response. No radiologic tumor responses were observed.ConclusionThese findings demonstrate the relative safety of CART72 cells. The limited persistence supports the incorporation of co-stimulatory domains in the CAR design and the use of fully human CAR constructs to mitigate immunogenicity

    Engineering T cells for cancer therapy

    Get PDF
    It is generally accepted that the immune system plays an important role in controlling tumour development. However, the interplay between tumour and immune system is complex, as demonstrated by the fact that tumours can successfully establish and develop despite the presence of T cells in tumour. An improved understanding of how tumours evade T-cell surveillance, coupled with technical developments allowing the culture and manipulation of T cells, has driven the exploration of therapeutic strategies based on the adoptive transfer of tumour-specific T cells. The isolation, expansion and re-infusion of large numbers of tumour-specific T cells generated from tumour biopsies has been shown to be feasible. Indeed, impressive clinical responses have been documented in melanoma patients treated with these T cells. These studies and others demonstrate the potential of T cells for the adoptive therapy of cancer. However, the significant technical issues relating to the production of natural tumour-specific T cells suggest that the application of this approach is likely to be limited at the moment. With the advent of retroviral gene transfer technology, it has become possible to efficiently endow T cells with antigen-specific receptors. Using this strategy, it is potentially possible to generate large numbers of tumour reactive T cells rapidly. This review summarises the current gene therapy approaches in relation to the development of adoptive T-cell-based cancer treatments, as these methods now head towards testing in the clinical trial setting

    Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined the effects of the R325W mutation on the three-dimensional (3D) structure of the β-cell-specific Zn<sup>2+ </sup>(zinc) transporter ZnT-8.</p> <p>Methods</p> <p>A model of the C-terminal domain of the human ZnT-8 protein was generated by homology modeling based on the known crystal structure of the <it>Escherichia coli </it>(<it>E. coli</it>) zinc transporter YiiP at 3.8 Å resolution.</p> <p>Results</p> <p>The homodimer ZnT-8 protein structure exists as a Y-shaped architecture with Arg325 located at the ultimate bottom of this motif at approximately 13.5 Å from the transmembrane domain juncture. The C-terminal domain sequences of the human ZnT-8 protein and the <it>E. coli </it>zinc transporter YiiP share 12.3% identical and 39.5% homologous residues resulting in an overall homology of 51.8%. Validation statistics of the homology model showed a reasonable quality of the model. The C-terminal domain exhibited an αββαβ fold with Arg325 as the penultimate N-terminal residue of the α2-helix. The side chains of both Arg325 and Trp325 point away from the interface with the other monomer, whereas the ε-NH<sub>3</sub><sup>+ </sup>group of Arg325 is predicted to form an ionic interaction with the β-COO<sup>- </sup>group of Asp326 as well as Asp295. An amino acid alignment of the β2-α2 C-terminal loop domain revealed a variety of neutral amino acids at position 325 of different ZnT-8 proteins.</p> <p>Conclusions</p> <p>Our validated homology models predict that both Arg325 and Trp325, amino acids with a helix-forming behavior, and penultimate N-terminal residues in the α2-helix of the C-terminal domain, are shielded by the planar surface of the three cytoplasmic β-strands and hence unable to affect the sensing capacity of the C-terminal domain. Moreover, the amino acid residue at position 325 is too far removed from the docking and transporter parts of ZnT-8 to affect their local protein conformations. These data indicate that the inherited R325W abnormality in SLC30A8 may be tolerated and results in adequate zinc transfer to the correct sites in the pancreatic islet cells and are consistent with the observation that the <it>SLC30A8 </it>gene variant R325W has a low predicted value for future type 2 diabetes at population-based level.</p

    An Estimate of the Numbers and Density of Low-Energy Structures (or Decoys) in the Conformational Landscape of Proteins

    Get PDF
    The conformational energy landscape of a protein, as calculated by known potential energy functions, has several minima, and one of these corresponds to its native structure. It is however difficult to comprehensively estimate the actual numbers of low energy structures (or decoys), the relationships between them, and how the numbers scale with the size of the protein.We have developed an algorithm to rapidly and efficiently identify the low energy conformers of oligo peptides by using mutually orthogonal Latin squares to sample the potential energy hyper surface. Using this algorithm, and the ECEPP/3 potential function, we have made an exhaustive enumeration of the low-energy structures of peptides of different lengths, and have extrapolated these results to larger polypeptides.We show that the number of native-like structures for a polypeptide is, in general, an exponential function of its sequence length. The density of these structures in conformational space remains more or less constant and all the increase appears to come from an expansion in the volume of the space. These results are consistent with earlier reports that were based on other models and techniques

    Cystatin C: current position and future prospects.

    Full text link
    Abstract Cystatin C is a low-molecular-weight protein which has been proposed as a marker of renal function that could replace creatinine. Indeed, the concentration of cystatin C is mainly determined by glomerular filtration and is particularly of interest in clinical settings where the relationship between creatinine production and muscle mass impairs the clinical performance of creatinine. Since the last decade, numerous studies have evaluated its potential use in measuring renal function in various populations. More recently, other potential developments for its clinical use have emerged. This review summarises current knowledge about the physiology of cystatin C and about its use as a renal marker, either alone or in equations developed to estimate the glomerular filtration rate. This paper also reviews recent data about the other applications of cystatin C, particularly in cardiology, oncology and clinical pharmacology. Clin Chem Lab Med 2008;46:1664-86

    Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cotton boll weevil (<it>Anthonomus grandis</it>) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. <it>In vitro </it>directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of <it>Bacillus thuringiensis</it>.</p> <p>Results</p> <p>Bioassays carried out with <it>A. grandis </it>larvae revealed that the LC<sub>50 </sub>of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability.</p> <p>Conclusions</p> <p>The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control <it>A. grandis</it>.</p

    C5a Enhances Dysregulated Inflammatory and Angiogenic Responses to Malaria In Vitro: Potential Implications for Placental Malaria

    Get PDF
    Placental malaria (PM) is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs) and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo.Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI) enhanced C5a receptor expression (CD88) on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10), chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta) and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM.These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function

    Scaling up genetic circuit design for cellular computing:advances and prospects

    Get PDF
    corecore