115 research outputs found

    Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy

    Get PDF
    High-frequency cortical activity, particularly in the 250–600 Hz (fast ripple) band, has been implicated in playing a crucial role in epileptogenesis and seizure generation. Fast ripples are highly specific for the seizure initiation zone. However, evidence for the association of fast ripples with epileptic foci depends on animal models and human cases with substantial lesions in the form of hippocampal sclerosis, which suggests that neuronal loss may be required for fast ripples. In the present work, we tested whether cell loss is a necessary prerequisite for the generation of fast ripples, using a non-lesional model of temporal lobe epilepsy that lacks hippocampal sclerosis. The model is induced by unilateral intrahippocampal injection of tetanus toxin. Recordings from the hippocampi of freely-moving epileptic rats revealed high-frequency activity (4100 Hz), including fast ripples. High-frequency activity was present both during interictal discharges and seizure onset. Interictal fast ripples proved a significantly more reliable marker of the primary epileptogenic zone than the presence of either interictal discharges or ripples (100–250 Hz). These results suggest that fast ripple activity should be considered for its potential value in the pre-surgical workup of non-lesional temporal lobe epilepsy

    The Evolutionary Origin of the Runx/CBFbeta Transcription Factors – Studies of the Most Basal Metazoans

    Get PDF
    BACKGROUND. Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS. In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION. These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.National Science Foundation (IBN-0212773, FP-91656101-0); Boston University SPRInG (20-202-8103-9); Israel Science Foundation (825/07

    The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, <it>Grainyhead </it>(GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression.</p> <p>Results</p> <p>To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (<it>Nematostella vectensis</it>, <it>Vallicula multiformis</it>, <it>Trichoplax adhaerens</it>, and <it>Amphimedon queenslandica</it>), a choanoflagellate (<it>Monosiga brevicollis</it>) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae <it>Volvox carteri </it>and <it>Chlamydomonas reinhardtii </it>or the amoebozoan <it>Dictyostelium purpureum</it>. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone <it>Nematostella</it>, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain.</p> <p>Conclusions</p> <p>In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.</p

    Intraspecific variation in oxidative stress tolerance in a model cnidarian: differences in peroxide sensitivity between and within populations of Nematostella vectensis

    Get PDF
    Nematostella vectensis is a member of the phylum Cnidaria, a lineage that includes anemones, corals, hydras, and jellyfishes. This estuarine anemone is an excellent model system for investigating the evolution of stress tolerance because it is easy to collect in its natural habitat and to culture in the laboratory, and it has a sequenced genome. Additionally, there is evidence of local adaptation to environmental stress in different N. vectensis populations, and abundant protein-coding polymorphisms have been identified, including polymorphisms in proteins that are implicated in stress responses. N. vectensis can tolerate a wide range of environmental parameters, and has recently been shown to have substantial intraspecific variation in temperature preference. We investigated whether different clonal lines of anemones also exhibit differential tolerance to oxidative stress. N. vectensis populations are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism and by other environmental factors. Fifteen clonal lines of N. vectensis collected from four different estuaries were exposed to hydrogen peroxide. Pronounced differences in survival and regeneration were apparent between clonal lines collected from Meadowlands, NJ, Baruch, SC, and Kingsport, NS, as well as among 12 clonal lines collected from a single Cape Cod marsh. To our knowledge, this is the first example of intraspecific variability in oxidative stress resistance in cnidarians or in any marine animal. As oxidative stress often accompanies heat stress in marine organisms, resistance to oxidative stress could strongly influence survival in warming oceans. For example, while elevated temperatures trigger bleaching in corals, oxidative stress is thought to be the proximal trigger of bleaching at the cellular level.This work was supported National Science Foundation MCB-0920461 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=0924749&HistoricalAwards=false) and National Science Foundation IOS-1354935 (https://www. nst.gov/awardsearch/showAward?AWD_ID=13549358,HistoricalAwards=false). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (MCB-0920461 - National Science Foundation; IOS-1354935 - National Science Foundation)Published versio

    The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. RESULTS: Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. CONCLUSION: The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX)

    Sex-specific and developmental expression of Dmrt genes in the starlet sea anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: The molecular mechanisms underlying sex determination and differentiation in animals are incredibly diverse. The Dmrt (doublesex and mab-3 related transcription factor) gene family is an evolutionary ancient group of transcription factors dating to the ancestor of metazoans that are, in part, involved in sex determination and differentiation in numerous bilaterian animals and thus represents a potentially conserved mechanism for differentiating males and females dating to the protostome-deuterostome ancestor. Recently, the diversity of this gene family throughout animals has been described, but the expression and potential function for Dmrt genes is not well understood outside the bilaterians. RESULTS: Here, we report sex- and developmental-specific expression of all 11 Dmrts in the starlet sea anemone Nematostella vectensis. Nine out of the eleven Dmrts showed significant differences in developmental expression, with the highest expression typically in the adult stage and, in some cases, with little or no expression measured during embryogenesis. When expression was compared in females and males, seven of the eleven Dmrt genes had significant differences in expression with higher expression in males than in females for six of the genes. Lastly, expressions of two Dmrt genes with differential expression in each sex are located in the mesenteries and into the pharynx in polyps. CONCLUSIONS: Our results show that the phylogenetic diversity of Dmrt genes in N. vectensis is matched by an equally diverse pattern of expression during development and in each sex. This dynamic expression suggests multiple functions for Dmrt genes likely present in early diverging metazoans. Detailed functional analyses of individual genes will inform hypotheses regarding the antiquity of function for these transcription factors.NTK was supported by the NSF Ocean Sciences Postdoctoral Fellowship, Award Number OCE-1323652, and Award Number 1012629 from the Burroughs Wellcome Fund Postdoctoral Enrichment Program. AMR was supported by Award Number F32HD062178 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) during a postdoctoral fellowship in Dr. Ann Tarrant's laboratory (WHOI) and Award Number R15GM114740 from National Institute of General Medicine (NIGMS). VS and EGK were supported by Binational Science Foundation Grant 2013119. AMR acknowledges generous funding from the University of North Carolina at Charlotte. (OCE-1323652 - NSF Ocean Sciences Postdoctoral Fellowship; 1012629 - Burroughs Wellcome Fund Postdoctoral Enrichment Program; F32HD062178 - Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD); R15GM114740 - National Institute of General Medicine (NIGMS); 2013119 - Binational Science Foundation; University of North Carolina at Charlotte)Published versio
    corecore