141 research outputs found

    Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy

    Get PDF
    High-frequency cortical activity, particularly in the 250–600 Hz (fast ripple) band, has been implicated in playing a crucial role in epileptogenesis and seizure generation. Fast ripples are highly specific for the seizure initiation zone. However, evidence for the association of fast ripples with epileptic foci depends on animal models and human cases with substantial lesions in the form of hippocampal sclerosis, which suggests that neuronal loss may be required for fast ripples. In the present work, we tested whether cell loss is a necessary prerequisite for the generation of fast ripples, using a non-lesional model of temporal lobe epilepsy that lacks hippocampal sclerosis. The model is induced by unilateral intrahippocampal injection of tetanus toxin. Recordings from the hippocampi of freely-moving epileptic rats revealed high-frequency activity (4100 Hz), including fast ripples. High-frequency activity was present both during interictal discharges and seizure onset. Interictal fast ripples proved a significantly more reliable marker of the primary epileptogenic zone than the presence of either interictal discharges or ripples (100–250 Hz). These results suggest that fast ripple activity should be considered for its potential value in the pre-surgical workup of non-lesional temporal lobe epilepsy

    Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs.</p> <p>Results</p> <p>Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between <it>MSX1 </it>and <it>MSX2 </it>reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (<it>Hmx</it>, <it>NK1</it>, <it>Emx</it>) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion.</p> <p>Conclusion</p> <p>Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.</p

    Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2008. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 214 (2008): 233-254.Salt marshes are challenging habitats due to natural variability in key environmental parameters including temperature, salinity, ultraviolet light, oxygen, sulfides, and reactive oxygen species. Compounding this natural variation, salt marshes are often heavily impacted by anthropogenic insults including eutrophication, toxic contamination, and coastal development that alter tidal and freshwater inputs. Commensurate with this environmental variability, estuarine animals generally exhibit broader physiological tolerances than freshwater, marine, or terrestrial species. One factor that determines an organism's physiological tolerance is its ability to upregulate "stress-response genes" in reaction to particular stressors. Comparative studies on diverse organisms have identified a number of evolutionarily conserved genes involved in responding to abiotic and biotic stressors. We used homology-based scans to survey the sequenced genome of Nematostella vectensis, the starlet sea anemone, an estuarine specialist, to identify genes involved in the response to three kinds of insult—physiochemical insults, pathogens, and injury. Many components of the stress-response networks identified in triploblastic animals have clear orthologs in the sea anemone, meaning that they must predate the cnidarian-triploblast split (e.g., xenobiotic receptors, biotransformative genes, ATP-dependent transporters, and genes involved in responding to reactive oxygen species, toxic metals, osmotic shock, thermal stress, pathogen exposure, and wounding). However, in some instances, stress-response genes known from triploblasts appear to be absent from the Nematostella genome (e.g., many metal-complexing genes). This is the first comprehensive examination of the genomic stress-response repertoire of an estuarine animal and a member of the phylum Cnidaria. The molecular markers of stress response identified in Nematostella may prove useful in monitoring estuary health and evaluating coastal conservation efforts. These data may also inform conservation efforts on other cnidarians, such as the reef-building corals.AMR was supported by a Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by The Beacon Institute for Rivers and Estuaries, and the J. Seward Johnson Fund. NTK was supported by a graduate research training grant from the National Institutes of Health. This research was also supported by NSF grant FP-91656101-0 to JCS and JRF, EPA grant F5E11155 to AMR and JRF, and a grant from the Conservation International Marine Management Area Science Program to JRF

    The Evolutionary Origin of the Runx/CBFbeta Transcription Factors – Studies of the Most Basal Metazoans

    Get PDF
    BACKGROUND. Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS. In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION. These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.National Science Foundation (IBN-0212773, FP-91656101-0); Boston University SPRInG (20-202-8103-9); Israel Science Foundation (825/07

    A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homeobox genes are a superclass of transcription factors with diverse developmental regulatory functions, which are found in plants, fungi and animals. In animals, several Antennapedia (ANTP)-class homeobox genes reside in extremely ancient gene clusters (for example, the Hox, ParaHox, and NKL clusters) and the evolution of these clusters has been implicated in the morphological diversification of animal bodyplans. By contrast, similarly ancient gene clusters have not been reported among the other classes of homeobox genes (that is, the LIM, POU, PRD and SIX classes).</p> <p>Results</p> <p>Using a combination of <it>in silico </it>queries and phylogenetic analyses, we found that a cluster of three PRD-class homeobox genes (<it>Homeobrain (hbn)</it>, <it>Rax (rx) </it>and <it>Orthopedia (otp)</it>) is present in cnidarians, insects and mollusks (a partial cluster comprising hbn and rx is present in the placozoan <it>Trichoplax adhaerens</it>). We failed to identify this 'HRO' cluster in deuterostomes; in fact, the <it>Homeobrain </it>gene appears to be missing from the chordate genomes we examined, although it is present in hemichordates and echinoderms. To illuminate the ancestral organization and function of this ancient cluster, we mapped the constituent genes against the assembled genome of a model cnidarian, the sea anemone <it>Nematostella vectensis</it>, and characterized their spatiotemporal expression using <it>in situ </it>hybridization. In <it>N. vectensis</it>, these genes reside in a span of 33 kb with the same gene order as previously reported in insects. Comparisons of genomic sequences and expressed sequence tags revealed the presence of alternative transcripts of Nv-otp and two highly unusual protein-coding polymorphisms in the terminal helix of the Nv-rx homeodomain. A population genetic survey revealed the Rx polymorphisms to be widespread in natural populations. During larval development, all three genes are expressed in the ectoderm, in non-overlapping territories along the oral-aboral axis, with distinct temporal expression.</p> <p>Conclusion</p> <p>We report the first evidence for a PRD-class homeobox cluster that appears to have been conserved since the time of the cnidarian-bilaterian ancestor, and possibly even earlier, given the presence of a partial cluster in the placozoan <it>Trichoplax</it>. Very similar clusters comprising these three genes exist in <it>Nematostella </it>and diverse protostomes. Interestingly, in chordates, one member of the ancestral cluster (<it>homeobrain</it>) has apparently been lost, and there is no linkage between <it>rx </it>and <it>orthopedia </it>in any of the vertebrates. In <it>Nematostella</it>, the spatial expression of these three genes along the body column is not colinear with their physical order in the cluster but the temporal expression is, therefore, using the terminology that has been applied to the Hox cluster genes, the HRO cluster would appear to exhibit temporal but not spatial colinearity. It remains to be seen whether the mechanisms responsible for the evolutionary conservation of the HRO cluster are the same mechanisms responsible for cohesion of the Hox cluster and other ANTP-class homeobox clusters that have been widely conserved throughout animal evolution.</p

    The miR-15/107 Group of MicroRNA Genes: Evolutionary Biology, Cellular Functions, and Roles in Human Diseases

    Get PDF
    The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer\u27s disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs\u27 5\u27 end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a superfamily ) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs\u27 5\u27 seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike

    The Role of Northeast Ohio Central Cities in the Regional Economy, 2000-2007

    Get PDF
    This report examines the four central cities in Northeast Ohio – Akron, Canton, Cleveland, and Youngstown — in the context of their metropolitan areas. A central city is the largest or most important city of a metropolitan area. A metropolitan area combines a large city with adjacent urbanized areas and peripheral areas that are closely bound to the center with strong ties to commuting, commerce, and a common labor market

    The Role of Northeast Ohio Central Cities in the Regional Economy, 2000-2007

    Get PDF
    This report examines the four central cities in Northeast Ohio – Akron, Canton, Cleveland, and Youngstown — in the context of their metropolitan areas. A central city is the largest or most important city of a metropolitan area. A metropolitan area combines a large city with adjacent urbanized areas and peripheral areas that are closely bound to the center with strong ties to commuting, commerce, and a common labor market

    The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, <it>Grainyhead </it>(GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression.</p> <p>Results</p> <p>To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (<it>Nematostella vectensis</it>, <it>Vallicula multiformis</it>, <it>Trichoplax adhaerens</it>, and <it>Amphimedon queenslandica</it>), a choanoflagellate (<it>Monosiga brevicollis</it>) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae <it>Volvox carteri </it>and <it>Chlamydomonas reinhardtii </it>or the amoebozoan <it>Dictyostelium purpureum</it>. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone <it>Nematostella</it>, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain.</p> <p>Conclusions</p> <p>In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.</p

    Intraspecific variation in oxidative stress tolerance in a model cnidarian: differences in peroxide sensitivity between and within populations of Nematostella vectensis

    Get PDF
    Nematostella vectensis is a member of the phylum Cnidaria, a lineage that includes anemones, corals, hydras, and jellyfishes. This estuarine anemone is an excellent model system for investigating the evolution of stress tolerance because it is easy to collect in its natural habitat and to culture in the laboratory, and it has a sequenced genome. Additionally, there is evidence of local adaptation to environmental stress in different N. vectensis populations, and abundant protein-coding polymorphisms have been identified, including polymorphisms in proteins that are implicated in stress responses. N. vectensis can tolerate a wide range of environmental parameters, and has recently been shown to have substantial intraspecific variation in temperature preference. We investigated whether different clonal lines of anemones also exhibit differential tolerance to oxidative stress. N. vectensis populations are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism and by other environmental factors. Fifteen clonal lines of N. vectensis collected from four different estuaries were exposed to hydrogen peroxide. Pronounced differences in survival and regeneration were apparent between clonal lines collected from Meadowlands, NJ, Baruch, SC, and Kingsport, NS, as well as among 12 clonal lines collected from a single Cape Cod marsh. To our knowledge, this is the first example of intraspecific variability in oxidative stress resistance in cnidarians or in any marine animal. As oxidative stress often accompanies heat stress in marine organisms, resistance to oxidative stress could strongly influence survival in warming oceans. For example, while elevated temperatures trigger bleaching in corals, oxidative stress is thought to be the proximal trigger of bleaching at the cellular level.This work was supported National Science Foundation MCB-0920461 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=0924749&HistoricalAwards=false) and National Science Foundation IOS-1354935 (https://www. nst.gov/awardsearch/showAward?AWD_ID=13549358,HistoricalAwards=false). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (MCB-0920461 - National Science Foundation; IOS-1354935 - National Science Foundation)Published versio
    corecore