57 research outputs found

    Developments in Superconductivity

    Get PDF
    Key experiments leading to our present understanding of superconductivity are reviewed

    Method for producing strain tolerant multifilamentary oxide superconducting wire

    Get PDF
    A strain tolerant multifilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments

    Strain tolerant microfilamentary superconducting wire

    Get PDF
    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments

    Method of increasing magnetostrictive response of rare earth-iron alloy rods

    Get PDF
    This invention comprises a method of increasing the magnetostrictive response of rare earth iron (RFe) magnetostrictive alloy rods by a thermal-magnetic treatment. The rod is heated to a temperature above its Curie temperature, viz. from 400 rod is at that temperature, a magnetic field is directionally applied and maintained while the rod is cooled, at least below its Curie temperature

    Microwave properties of superconducting MgB2

    Get PDF
    Measurements of 10 GHz microwavesurface resistance, Rs, of dense MgB2wire and pellet are reported. Significant improvements are observed in the wire with reduction of porosity. The data lie substantially above the theoretical estimates for a pure Bardeen–Cooper–Schrieffer s-wave superconductor. However, the Rs (20 K) of the wire is an order of magnitude lower than that of polycrystalYBa2Cu3O6.95 and matches with single-crystal YBa2Cu3O6.95. The results show promise for the use of MgB2 in microwave applications

    Possible twin-boundary effect upon the properties of high-Tc superconductors

    Get PDF
    We have studied the field at which superconductivity nucleates in grain-aligned samples of Y1Ba2Cu3O7-δ very close to the transition temperature Tc. For the field parallel to the c axis and for temperatures within 2 K of Tc, the nucleation field is found to vary as (1-T/Tc)1/2. The data suggest that superconductivity localized near twin boundaries may exist at temperatures close to Tc. .A

    Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    No full text
    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {xi}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic field near H{sub c2}

    Pressure cell for magnetostrictive measurements

    No full text
    A pressure cell has been designed to study the magnetostrictive properties of a material as a function of both pressure and magnetic field. For changes in length on the order of 2000 ppm, it is necessary to have a substantial compliance in the pressure cell to retain a constant stress over the length of travel.The following article appeared in Review of Scientific Instruments 60 (1989): 28 and may be found at http://dx.doi.org/10.1063/1.1140425.</p

    Strain tolerant microfilamentary superconducting wire

    Get PDF
    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.</p
    • …
    corecore