14 research outputs found

    Cardiovascular magnetic resonance of cardiac function and myocardial mass in preterm infants:a preliminary study of the impact of patent ductus arteriosus

    Get PDF
    Background Many pathologies seen in the preterm population are associated with abnormal blood supply, yet robust evaluation of preterm cardiac function is scarce and consequently normative ranges in this population are limited. The aim of this study was to quantify and validate left ventricular dimension and function in preterm infants using cardiovascular magnetic resonance (CMR). An initial investigation of the impact of the common congenital defect patent ductus arteriosus (PDA) was then carried out. Methods Steady State Free Procession short axis stacks were acquired. Normative ranges of left ventricular end diastolic volume (EDV), stroke volume (SV), left ventricular output (LVO), ejection fraction (EF), left ventricular (LV) mass, wall thickness and fractional thickening were determined in “healthy” (control) neonates. Left ventricular parameters were then investigated in PDA infants. Unpaired student t-tests compared the 2 groups. Multiple linear regression analysis assessed impact of shunt volume in PDA infants, p-value ≤ 0.05 being significant. Results 29 control infants median (range) corrected gestational age at scan 34+6(31+1-39+3) weeks were scanned. EDV, SV, LVO, LV mass normalized by weight and EF were shown to decrease with increasing corrected gestational age (cGA) in controls. In 16 PDA infants (cGA 30+3(27+3-36+1) weeks) left ventricular dimension and output were significantly increased, yet there was no significant difference in ejection fraction and fractional thickening between the two groups. A significant association between shunt volume and increased left ventricular mass correcting for postnatal age and corrected gestational age existed. Conclusion CMR assessment of left ventricular function has been validated in neonates, providing more robust normative ranges of left ventricular dimension and function in this population. Initial investigation of PDA infants would suggest that function is relatively maintained

    Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants

    Get PDF
    BackgroundThe echocardiographic assessment of circulatory function in sick newborn infants has the potential to improve patient care. However, measurements are prone to error and have not been sufficiently validated. Phase-contrast magnetic resonance imaging (MRI) provides highly validated measures of blood flow and has recently been applied to the newborn population. The aim of this study was to validate measures of left ventricular output and superior vena caval flow volume in newborn infants.MethodsEchocardiographic and MRI assessments were performed within 1 working day of each other in a cohort of newborn infants.ResultsExaminations were performed in 49 infants with a median corrected gestational age at scan of 34.43 weeks (range, 27.43–40 weeks) and a median weight at scan of 1,880 g (range, 660–3,760 g). Echocardiographic assessment of left ventricular output showed a strong correlation with MRI assessment (R2 = 0.83; mean bias, −9.6 mL/kg/min; limits of agreement, −79.6 to +60.0 mL/kg/min; repeatability index, 28.2%). Echocardiographic assessment of superior vena caval flow showed a poor correlation with MRI assessment (R2 = 0.22; mean bias, −13.7 mL/kg/min; limits of agreement, −89.1 to +61.7 mL/kg/min; repeatability index, 68.0%). Calculating superior vena caval flow volume from an axial area measurement and applying a 50% reduction to stroke distance to compensate for overestimation gave a slightly improved correlation with MRI (R2 = 0.29; mean bias, 2.6 mL/kg/min; limits of agreement, −53.4 to +58.6 mL/kg/min; repeatability index, 54.5%).ConclusionsEchocardiographic assessment of left ventricular output appears relatively robust in newborn infant. Echocardiographic assessment of superior vena caval flow is of limited accuracy in this population, casting doubt on the utility of the measurement for diagnostic decision making
    corecore