16 research outputs found

    Post-Streptococcal Antibodies Are Associated with Metabolic Syndrome in a Population-Based Cohort

    Get PDF
    Background: Streptococcal infections are known to trigger autoimmune disorders, affecting millions worldwide. Recently, we found an association between post-streptococcal autoantibodies against Protein Disulphide Isomerase (PDI), an enzyme involved in insulin degradation and insulin resistance. This led us to evaluate associations between post-streptococcal antibodies and metabolic syndrome, as defined by the updated National Cholesterol Education Program definition, 2005. Methods and Findings: Metabolic data (HDL, triglycerides, fasting glucose, blood pressure, waist circumference, BMI, smoking), post-streptococcal antibodies (anti-Streptolysin O (ASO) and anti-PDI), and C-reactive protein (CRP, as a general inflammatory marker), were assessed in 1156 participants of the Wisconsin Sleep Cohort Study. Anti-PDI antibodies were found in 308 participants (26.6%), ASO$100 in 258 (22.3%), and 482 (41.7%) met diagnostic criteria for metabolic syndrome. Anti-PDI antibodies but not ASO were significantly associated with metabolic syndrome [n = 1156, OR 1.463 (95 % CI 1.114, 1.920), p = 0.0062; adjusted for age, gender, education, smoking]. Importantly, the anti-PDI- metabolic syndrome association remained significant after adjusting for CRP and fasting insulin. Conclusions: Post-streptococcal anti-PDI antibodies are associated with metabolic syndrome regardless of fasting insulin and CRP levels. Whereas these data are in line with a growing body of evidence linking infections, immunity an

    Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: a longitudinal analysis of the Wisconsin Sleep Cohort

    No full text
    Background Non-dipping of nocturnal blood pressure (BP) is associated with target organ damage and cardiovascular disease. Obstructive sleep apnoea (OSA) is associated with incident non-dipping. However, the relationship between disordered breathing during rapid eye movement (REM) sleep and the risk of developing non-dipping has not been examined. This study investigates whether OSA during REM sleep is associated with incident non-dipping. Methods Our sample included 269 adults enrolled in the Wisconsin Sleep Cohort Study who completed two or more 24 h ambulatory BP studies over an average of 6.6 years of follow-up. After excluding participants with prevalent non-dipping BP or antihypertensive use at baseline, there were 199 and 215 participants available for longitudinal analysis of systolic and diastolic non-dipping, respectively. OSA in REM and non-REM sleep were defined by apnoea hypopnoea index (AHI) from baseline in-laboratory polysomnograms. Systolic and diastolic non-dipping were defined by systolic and diastolic sleep/wake BP ratios \u3e0.9. Modified Poisson regression models estimated the relative risks for the relationship between REM AHI and incident non-dipping, adjusting for non-REM AHI and other covariates. Results There was a dose–response greater risk of developing systolic and diastolic non-dipping BP with greater severity of OSA in REM sleep (p-trend=0.021 for systolic and 0.024 for diastolic non-dipping). Relative to those with REM AHI\u3c1 event/h, those with REM AHI≥15 had higher relative risk of incident systolic non-dipping (2.84, 95% CI 1.10 to 7.29) and incident diastolic non-dipping (4.27, 95% CI 1.20 to 15.13). Conclusions Our findings indicate that in a population-based sample, REM OSA is independently associated with incident non-dipping of BP

    A Mosaic Activating Mutation in AKT1 Associated with the Proteus Syndrome

    No full text
    BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylation-specific antibodies on Western blots. RESULTS Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G -> A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation. CONCLUSIONS The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K-AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.
    corecore