4,099 research outputs found

    Highly efficient single photon emission from single quantum dots within a two-dimensional photonic bandgap

    Full text link
    We report highly efficient single photon generation from InGaAs self-assembled quantum dots emitting within a two-dimensional photonic bandgap. A strongly suppressed multiphoton probability is obtained for single quantum dots in bulk GaAs and those emitting into the photonic bandgap. In the latter case, photoluminescence saturation spectroscopy is employed to measure a ~17 times enhancement of the average photon extraction efficiency, when compared to quantum dots in bulk GaAs. For quantum dots in the photonic crystal we measure directly an external quantum efficiency up to 26%, much higher than for quantum dots on the same sample without a tailored photonic environment. The results show that highly efficient quantum dot single photon sources can be realized, without the need for complex nanopositioning techniques

    Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule

    Get PDF
    We probe acoustic phonon mediated relaxation between tunnel coupled exciton states in an individual quantum dot molecule in which the inter-dot quantum coupling and energy separation between exciton states is continuously tuned using static electric field. Time resolved and temperature dependent optical spectroscopy are used to probe inter-level relaxation around the point of maximum coupling. The radiative lifetimes of the coupled excitonic states can be tuned from ~2 ns to ~10 ns as the spatially direct and indirect character of the wavefunction is varied by detuning from resonance. Acoustic phonon mediated inter-level relaxation is shown to proceed over timescales comparable to the direct exciton radiative lifetime, indicative of a relaxation bottleneck for level spacings in the range $\Delta E\$ ~3-6 meV.Comment: 6 pages, 4 figures, submitted for publicatio

    Optically Probing Spin and Charge Interactions in an Tunable Artificial Molecule

    Get PDF
    We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent inter-dot quantum couplings are probed optically by adding a single electron-hole pair and detecting the emission from negatively charged exciton states. Coulomb and Pauli blockade effects are directly observed and hybridization and electrostatic charging energies are independently measured. The inter-dot quantum coupling is confirmed to be mediated predominantly by electron tunneling. Our results are in excellent accord with calculations that provide a complete picture of negative excitons and few electron states in quantum dot molecules.Comment: shortened version: 6 pages, 3 figures, 1 table, to appear in Phys. Rev. Let

    Evidence for the Galactic X-ray Bulge II

    Full text link
    A mosaic of 5 \ros~PSPC pointed observations in the Galactic plane (l∼25∘l\sim25^{\circ}) reveals X-ray shadows in the 0.5−2.00.5-2.0 keV band cast by distant molecular clouds. The observed on-cloud and off-cloud X-ray fluxes indicate that ∼15\sim15% and ∼37\sim37% of the diffuse X-ray background in this direction in the \tq~keV and 1.5 keV bands, respectively, originates behind the molecular gas which is located at ∼\sim3 kpc from the Sun. The implication of the derived background X-ray flux beyond the absorbing molecular cloud is consistent with, and lends further support to recent observations of a Galactic X-ray bulge.Comment: 19 pages, 5 figures, 2 table

    Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

    Get PDF
    We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect

    Shape control of QDs studied by cross-sectional scanning tunneling microscopy

    Get PDF
    In this cross-sectional scanning tunneling microscopy study we investigated various techniques to control the shape of self-assembled quantum dots (QDs) and wetting layers (WLs). The result shows that application of an indium flush during the growth of strained InGaAs/GaAs QD layers results in flattened QDs and a reduced WL. The height of the QDs and WLs could be controlled by varying the thickness of the first capping layer. Concerning the technique of antimony capping we show that the surfactant properties of Sb result in the preservation of the shape of strained InAs/InP QDs during overgrowth. This could be achieved by both a growth interrupt under Sb flux and capping with a thin GaAsSb layer prior to overgrowth of the uncapped QDs. The technique of droplet epitaxy was investigated by a structural analysis of strain free GaAs/AlGaAs QDs. We show that the QDs have a Gaussian shape, that the WL is less than 1 bilayer thick, and that minor intermixing of Al with the QDs takes place.Comment: 7 pages, 10 figure
    • …
    corecore