4,827 research outputs found

    Assessing the Effectiveness of a Computer Simulation in Introductory Undergraduate Environments

    Get PDF
    We present studies documenting the effectiveness of using a computer simulation, specifically the Circuit Construction Kit (CCK) developed as part of the Physics Education Technology Project (PhET) [1, 2], in two environments: an interactive college lecture and an inquiry-based laboratory. In the first study conducted in lecture, we compared students viewing CCK to viewing a traditional demonstration during Peer Instruction [3]. Students viewing CCK had a 47% larger relative gain (11% absolute gain) on measures of conceptual understanding compared to traditional demonstrations. These results led us to study the impact of the simulation's explicit representation for visualizing current flow in a laboratory environment, where we removed this feature for a subset of students. Students using CCK with or without the explicit visualization of current performed similarly to each other on common exam questions. Although the majority of students in both groups favored the use of CCK over real circuit equipment, the students who used CCK without the explicit current model favored the simulation more than the other grou

    Approaches to Estimating the Health State Dependence of the Utility Function

    Get PDF
    If the marginal utility of consumption depends on health status, this will affect the economic analysis of a number of central problems in public finance, including the optimal structure of health insurance and optimal life cycle savings. In this paper, we describe the promises and challenges of various approaches to estimating the effect of health on the marginal utility of consumption. Our basic conclusion is that while none of these approaches is a panacea, many offer the potential to shed important insights on the nature of health state dependence.

    Correlating Student Beliefs With Student Learning Using The Colorado Learning Attitudes about Science Survey

    Get PDF
    A number of instruments have been designed to probe the variety of attitudes, beliefs, expectations, and epistemological frames taught in our introductory physics courses. Using a newly developed instrument -- the Colorado Learning Attitudes about Science Survey (CLASS)[1] -- we examine the relationship between students' beliefs about physics and other educational outcomes, such as conceptual learning and student retention. We report results from surveys of over 750 students in a variety of courses, including several courses modified to promote favorable beliefs about physics. We find positive correlations between particular student beliefs and conceptual learning gains, and between student retention and favorable beliefs in select categories. We also note the influence of teaching practices on student beliefs

    Localized to extended states transition for two interacting particles in a two-dimensional random potential

    Full text link
    We show by a numerical procedure that a short-range interaction uu induces extended two-particle states in a two-dimensional random potential. Our procedure treats the interaction as a perturbation and solve Dyson's equation exactly in the subspace of doubly occupied sites. We consider long bars of several widths and extract the macroscopic localization and correlation lengths by an scaling analysis of the renormalized decay length of the bars. For u=1u=1, the critical disorder found is Wc=9.3±0.2W_{\rm c}=9.3\pm 0.2, and the critical exponent ν=2.4±0.5\nu=2.4\pm 0.5. For two non-interacting particles we do not find any transition and the localization length is roughly half the one-particle value, as expected.Comment: 4 two-column pages, 4 eps figures, Revtex, to be published in Europhys. Let

    Metallic spin glasses

    Full text link
    Recent work on the zero temperature phases and phase transitions of strongly random electronic system is reviewed. The transition between the spin glass and quantum paramagnet is examined, for both metallic and insulating systems. Insight gained from the solution of infinite range models leads to a quantum field theory for the transition between a metallic quantum paramagnetic and a metallic spin glass. The finite temperature phase diagram is described and crossover functions are computed in mean field theory. A study of fluctuations about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference on Non-Fermi liquids, 25 pages, requires IOP style file

    Comment on "Consistency, amplitudes, and probabilities in quantum theory"

    Full text link
    In a recent article [Phys. Rev. A 57, 1572 (1998)] Caticha has concluded that ``nonlinear variants of quantum mechanics are inconsistent.'' In this note we identify what it is that nonlinear quantum theories have been shown to be inconsistent with.Comment: LaTeX, 5 pages, no figure

    Quantum field theory on a growing lattice

    Full text link
    We construct the classical and canonically quantized theories of a massless scalar field on a background lattice in which the number of points--and hence the number of modes--may grow in time. To obtain a well-defined theory certain restrictions must be imposed on the lattice. Growth-induced particle creation is studied in a two-dimensional example. The results suggest that local mode birth of this sort injects too much energy into the vacuum to be a viable model of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and reference
    • …
    corecore