7,046 research outputs found
StakeNet: using social networks to analyse the stakeholders of large-scale software projects
Many software projects fail because they overlook stakeholders or involve the wrong representatives of significant groups.
Unfortunately, existing methods in stakeholder analysis are
likely to omit stakeholders, and consider all stakeholders as equally influential. To identify and prioritise stakeholders, we have developed StakeNet, which consists of three main steps: identify stakeholders and ask them to recommend other stakeholders and stakeholder roles, build a social network whose nodes are stakeholders and links are recommendations, and prioritise stakeholders using a variety of social network measures. To evaluate StakeNet, we conducted one of the first empirical studies of requirements stakeholders on a software project for a 30,000-user system. Using the data
collected from surveying and interviewing 68 stakeholders,
we show that StakeNet identifies stakeholders and their roles with high recall, and accurately prioritises them. StakeNet uncovers a critical stakeholder role overlooked in the project, whose omission significantly impacted project success
StakeSource: harnessing the power of crowdsourcing and social networks in stakeholder analysis
Projects often fail because they overlook stakeholders. Unfortunately, existing stakeholder analysis tools only capture stakeholders' information, relying on experts to manually identify them. StakeSource is a web-based tool that automates stakeholder analysis. It "crowdsources" the stakeholders themselves for recommendations about other stakeholders and aggregates their answers using social network analysis
Consistency analysis of Kaluza-Klein geometric sigma models
Geometric sigma models are purely geometric theories of scalar fields coupled
to gravity. Geometrically, these scalars represent the very coordinates of
space-time, and, as such, can be gauged away. A particular theory is built over
a given metric field configuration which becomes the vacuum of the theory.
Kaluza-Klein theories of the kind have been shown to be free of the classical
cosmological constant problem, and to give massless gauge fields after
dimensional reduction. In this paper, the consistency of dimensional reduction,
as well as the stability of the internal excitations, are analyzed. Choosing
the internal space in the form of a group manifold, one meets no
inconsistencies in the dimensional reduction procedure. As an example, the
SO(n) groups are analyzed, with the result that the mass matrix of the internal
excitations necessarily possesses negative modes. In the case of coset spaces,
the consistency of dimensional reduction rules out all but the stable mode,
although the full vacuum stability remains an open problem.Comment: 13 pages, RevTe
Representations of U(1,q) and Constructive Quaternion Tensor Products
The representation theory of the group U(1,q) is discussed in detail because
of its possible application in a quaternion version of the Salam-Weinberg
theory.
As a consequence, from purely group theoretical arguments we demonstrate that
the eigenvalues must be right-eigenvalues and that the only consistent scalar
products are the complex ones. We also define an explicit quaternion tensor
product which leads to a set of additional group representations for integer
``spin''.Comment: 28 pages, Latex, Dipartimento di Fisica, Universita di Lecce
INFN-Sezione di Lecc
A model for the accidental catalysis of protein unfolding in vivo
Activated processes such as protein unfolding are highly sensitive to
heterogeneity in the environment. We study a highly simplified model of a
protein in a random heterogeneous environment, a model of the in vivo
environment. It is found that if the heterogeneity is sufficiently large the
total rate of the process is essentially a random variable; this may be the
cause of the species-to-species variability in the rate of prion protein
conversion found by Deleault et al. [Nature, 425 (2003) 717].Comment: 5 pages, 2 figure
General solution of equations of motion for a classical particle in 9-dimensional Finslerian space
A Lagrangian description of a classical particle in a 9-dimensional flat
Finslerian space with a cubic metric function is constructed. The general
solution of equations of motion for such a particle is obtained. The Galilean
law of inertia for the Finslerian space is confirmed.Comment: 10 pages, LaTeX-2e, no figures; added 2 reference
Renormalization of hole-hole interaction at decreasing Drude conductivity
The diffusion contribution of the hole-hole interaction to the conductivity
is analyzed in gated GaAs/InGaAs/GaAs heterostructures. We show
that the change of the interaction correction to the conductivity with the
decreasing Drude conductivity results both from the compensation of the singlet
and triplet channels and from the arising prefactor in the
conventional expression for the interaction correction.Comment: 6 pages, 5 figure
`Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories
Based on the algebraico-categorical (:sheaf-theoretic and sheaf
cohomological) conceptual and technical machinery of Abstract Differential
Geometry, a new, genuinely background spacetime manifold independent, field
quantization scenario for vacuum Einstein gravity and free Yang-Mills theories
is introduced. The scheme is coined `third quantization' and, although it
formally appears to follow a canonical route, it is fully covariant, because it
is an expressly functorial `procedure'. Various current and future Quantum
Gravity research issues are discussed under the light of 3rd-quantization. A
postscript gives a brief account of this author's personal encounters with
Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating
Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly
written that the Editor for this volume is Daniele Oriti, with CUP as
publisher. I apologize for the mistake.
Disordered electron liquid in double quantum well heterostructures: Renormalization group analysis and dephasing rate
We report a detailed study of the influence of the electron-electron
interaction on physical observables (conductance, etc.) of a disordered
electron liquid in double quantum well heterostructure. We find that even in
the case of common elastic scattering off electrons in both quantum wells, the
asymmetry in the electron-electron interaction across and within quantum wells
decouples them at low temperatures. Our results are in quantitative agreement
with recent transport experiments on the gated double quantum well
AlGaAs/GaAs/AlGaAs heterostructures.Comment: 15 pages; 5 figure
Recommended from our members
Challenges of ultra large scale integration of biomedical computing systems
The NCRI Informatics Initiative is overseeing the implementation of an informatics
framework for the UK cancer research community. The framework advocates an integrated
multidisciplinary method of working between scientific and medical communities. Key to this
process is community adoption of high quality acquisition, storage, sharing and integration of
diverse data elements to improve knowledge of the causes, prevention and treatment of
cancer. The integration of the complex data and meta-data used by these multiple
communities is a significant challenge and there are technical, resource-based and
sociological issues to be addressed. In this paper we review progress aimed at establishing
the framework and outline key challenges in ultra large scale integration of biomedical
computing systems
- âŠ