3,601 research outputs found

    Infrared spectroscopy of Comet Kohoutek

    Get PDF
    Interferometry observations from 90-in. and 61-in. telescopes tracking the Comet Kohoutek are summarized. Laboratory reflection studies of ices potentially useful for future cometary work were conducted. The frosts studied included: H2O, CO2 NH3, H2S, CH4, NH4HS, and ammonia polysulfide. The frost spectra show remarkable changes with the temperatures, particularly in the case of hydrogen sulfide. Additional analysis found the variation in the H2S ice spectrum to be due to a phase change from a low temperature tetragonal unit cube to a higher temperature face-centered cubic structure. The spectra data indicate that if frost spectra are required for comparison with observed cometary or planetary absorption, the temperature of the frost must be matched

    Design study of an entry probe spectro-reflectometer

    Get PDF
    A wind tunnel was built to simulate the rapid movement of an entry probe through the Jupiter atmosphere. Wind speeds range from 1 to 50 meters per second in a closed system. Wind velocity and temperature probes as well as a cryogenically cooled cold finger can be placed in the 6 inch diameter viewing section. The initial testing of the wind tunnel involved running sectional profiles through the observation port of air currents of 0.1 to 3.0 atmosphere. The velocity profile was very uniform throughout the cross section of the experimental port, with the exception of the wall effects. The deposition of cooled volatiles using the wind tunnel was not performed. However, measurements of the deposition of H2O ice on a cryogenically cooled thickness modulator were made under ambient conditions, namely room temperature and pressure. In the Frost Depositon Test Facility, ice deposition was measured at thicknesses of about a half millimeter and frost was produced whose thickness reflectivity could easily be measured by reflectance spectroscopy

    Profiling of OCR'ed Historical Texts Revisited

    Full text link
    In the absence of ground truth it is not possible to automatically determine the exact spectrum and occurrences of OCR errors in an OCR'ed text. Yet, for interactive postcorrection of OCR'ed historical printings it is extremely useful to have a statistical profile available that provides an estimate of error classes with associated frequencies, and that points to conjectured errors and suspicious tokens. The method introduced in Reffle (2013) computes such a profile, combining lexica, pattern sets and advanced matching techniques in a specialized Expectation Maximization (EM) procedure. Here we improve this method in three respects: First, the method in Reffle (2013) is not adaptive: user feedback obtained by actual postcorrection steps cannot be used to compute refined profiles. We introduce a variant of the method that is open for adaptivity, taking correction steps of the user into account. This leads to higher precision with respect to recognition of erroneous OCR tokens. Second, during postcorrection often new historical patterns are found. We show that adding new historical patterns to the linguistic background resources leads to a second kind of improvement, enabling even higher precision by telling historical spellings apart from OCR errors. Third, the method in Reffle (2013) does not make any active use of tokens that cannot be interpreted in the underlying channel model. We show that adding these uninterpretable tokens to the set of conjectured errors leads to a significant improvement of the recall for error detection, at the same time improving precision

    Summary of booster propulsion/vehicle impact study results

    Get PDF
    Hydrogen, RP-1, propane, and methane were identified by propulsion technology studies as the most probable fuel candidates for the boost phase of future launch vehicles. The objective of this study was to determine the effects of booster engines using these fuels and coolant variations on representative future launch vehicles. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to optimize two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique is described

    Gaussian quadrature exponential sum modeling of near infrared methane laboratory spectra obtained at temperatures from 106 to 297 K

    Get PDF
    Transmission measurements made on near-infrared laboratory methane spectra have previously been fit using a Malkmus band model. The laboratory spectra were obtained in three groups at temperatures averaging 112, 188, and 295 K; band model fitting was done separately for each temperature group. These band model parameters cannot be used directly in scattering atmosphere model computations, so an exponential sum model is being developed which includes pressure and temperature fitting parameters. The goal is to obtain model parameters by least square fits at 10/cm intervals from 3800 to 9100/cm. These results will be useful in the interpretation of current planetary spectra and also NIMS spectra of Jupiter anticipated from the Galileo mission

    Reduction and analysis of photometric data on Comet Halley

    Get PDF
    The discovery that periodic variations in the brightness of Comet Halley were characterized by two unrelated frequencies implies that the nucleus is in a complex state of rotation. It either nutates as a result of the random addition of small torque perturbations accumulated over many perihelion passages, or the jet activity torques are so strong that it precesses wildly at each perihelion passage. To diagnose the state of nuclear rotation, researchers began a program to acquire photometric time series of the comet as it recedes from the sun. The intention is to observe the decay of the comet's atmosphere and then, when it is unemcumbered by the light of the coma, follow the light variation of the nucleus itself. The latter will be compared with preperihelion time series and the orientation of the nucleus at the time of Vega and Giotto flybys and an accurate rotational ephemeris constructed. Halley was observed on 38 nights during 1987 and approximately 21 nights in 1988. The comet moved from 5 AU to 8.5 AU during this time. The brightness of the coma was found to rapidly decrease in 1988 as the coma and cometary activity collapses. The magnitude in April 1988 was 19 mag (visual) and it is predicted that the nucleus itself will be the major contributor to the brightness in the 1988 and 1989 season
    • …
    corecore