33 research outputs found

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes

    No full text
    Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1–5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions (“actionable genes”). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in “actionable genes”, including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes

    GALNT2 Expression Is Reduced in Patients with Type 2 Diabetes: Possible Role of Hyperglycemia

    Get PDF
    Impaired insulin action plays a major role in the pathogenesis of type 2 diabetes, a chronic metabolic disorder which imposes a tremendous burden to morbidity and mortality worldwide. Unraveling the molecular mechanisms underlying insulin resistance would improve setting up preventive and treatment strategies of type 2 diabetes. Down-regulation of GALNT2, an UDPN-acetyl-alpha-D-galactosamine polypeptideN-acetylgalactosaminyltransferase-2 (ppGalNAc-T2), causes impaired insulin signaling and action in cultured human liver cells. In addition, GALNT2 mRNA levels are down-regulated in liver of spontaneously insulin resistant, diabetic Goto-Kakizaki rats. To investigate the role of GALNT2 in human hyperglycemia, we measured GALNT2 mRNA expression levels in peripheral whole blood cells of 84 non-obese and 46 obese non-diabetic individuals as well as of 98 obese patients with type 2 diabetes. We also measured GALNT2 mRNA expression in human U937 cells cultured under different glucose concentrations. In vivo studies indicated that GALNT2 mRNA levels were significantly reduced from non obese control to obese non diabetic and to obese diabetic individuals (p<0.001). In vitro studies showed that GALNT2 mRNA levels was reduced in U937 cells exposed to high glucose concentrations (i.e. 25 mmol/l glucose) as compared to cells exposed to low glucose concentration (i.e. 5.5 mmol/l glucose +19.5 mmol/l mannitol). In conclusion, our data indicate that GALNT2 is down-regulated in patients with type 2 diabetes and suggest that this association is, at least partly, secondary to hyperglycemia. Further studies are needed to understand whether GALNT2 down-regulation plays a pathogenic role in maintaining and/or aggravating the metabolic abnormalities of diabetic milieu. © 2013 Marucci et al

    GALNT2 expression is reduced in patients with Type 2 diabetes: possible role of hyperglycemia.

    Get PDF
    Impaired insulin action plays a major role in the pathogenesis of type 2 diabetes, a chronic metabolic disorder which imposes a tremendous burden to morbidity and mortality worldwide. Unraveling the molecular mechanisms underlying insulin resistance would improve setting up preventive and treatment strategies of type 2 diabetes. Down-regulation of GALNT2, an UDPN-acetyl-alpha-D-galactosamine polypeptideN-acetylgalactosaminyltransferase-2 (ppGalNAc-T2), causes impaired insulin signaling and action in cultured human liver cells. In addition, GALNT2 mRNA levels are down-regulated in liver of spontaneously insulin resistant, diabetic Goto-Kakizaki rats. To investigate the role of GALNT2 in human hyperglycemia, we measured GALNT2 mRNA expression levels in peripheral whole blood cells of 84 non-obese and 46 obese non-diabetic individuals as well as of 98 obese patients with type 2 diabetes. We also measured GALNT2 mRNA expression in human U937 cells cultured under different glucose concentrations. In vivo studies indicated that GALNT2 mRNA levels were significantly reduced from non obese control to obese non diabetic and to obese diabetic individuals (p<0.001). In vitro studies showed that GALNT2 mRNA levels was reduced in U937 cells exposed to high glucose concentrations (i.e. 25 mmol/l glucose) as compared to cells exposed to low glucose concentration (i.e. 5.5 mmol/l glucose +19.5 mmol/l mannitol). In conclusion, our data indicate that GALNT2 is down-regulated in patients with type 2 diabetes and suggest that this association is, at least partly, secondary to hyperglycemia. Further studies are needed to understand whether GALNT2 down-regulation plays a pathogenic role in maintaining and/or aggravating the metabolic abnormalities of diabetic milieu

    Preparation and characterization of soybean oil-based polyurethanes for digital doming applications

    No full text
    Polyurethane-resin doming is currently one of the fastest growing markets in the field of industrial graphics and product identification. Semi-rigid bio-based polyurethanes were prepared deriving from soybean oil as a valuable alternative to fossil materials for digital doming and applied to digital mosaic technology. Bio-resins produced can favorably compete with the analogous fossil polymers, giving high-quality surface coatings (ascertained by SEM analyses). In addition, polyurethane synthesis was accomplished by using a mercury- and tin-free catalyst (the commercially available zinc derivative K22) bringing significant benefits in terms of cost efficiency and eco-sustainability
    corecore