113 research outputs found
Potentiation of the anti-tumour effects of Photofrin®-based photodynamic therapy by localized treatment with G-CSF
Photofrin®-based photodynamic therapy (PDT) has recently been approved for palliative and curative purposes in cancer patients. It has been demonstrated that neutrophils are indispensable for its anti-tumour effectiveness. We decided to evaluate the extent of the anti-tumour effectiveness of PDT combined with administration of granulocyte colony-stimulating factor (G-CSF) as well as the influence of Photofrin®and G-CSF on the myelopoiesis and functional activity of neutrophils in mice. An intensive treatment with G-CSF significantly potentiated anti-tumour effectiveness of Photofrin®-based PDT resulting in a reduction of tumour growth and prolongation of the survival time of mice bearing two different tumours: colon-26 and Lewis lung carcinoma. Moreover, 33% of C-26-bearing mice were completely cured of their tumours after combined therapy and developed a specific and long-lasting immunity. The tumours treated with both agents contained more infiltrating neutrophils and apoptotic cells then tumours treated with either G-CSF or PDT only. Importantly, simultaneous administration of Photofrin®and G-CSF stimulated bone marrow and spleen myelopoiesis that resulted in an increased number of neutrophils demonstrating functional characteristics of activation. Potentiated anti-tumour effects of Photofrin®-based PDT combined with G-CSF observed in two murine tumour models suggest that clinical trials using this tumour therapy protocol would be worth pursuing. © 2000 Cancer Research Campaig
Mapping the Spatio-Temporal Pattern of the Mammalian Target of Rapamycin (mTOR) Activation in Temporal Lobe Epilepsy
Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE
Inhibition of Chondrosarcoma Growth by mTOR Inhibitor in an In Vivo Syngeneic Rat Model
BACKGROUND: Chondrosarcomas are the second most frequent primary malignant type of bone tumor. No effective systemic treatment has been identified in advanced or adjuvant phases for chondrosarcoma. The aim of the present study was to determine the antitumor effects of doxorubicin and everolimus, an mTOR inhibitor on chondrosarcoma progression. METHODS AND FINDINGS: Doxorubin and/or everolimus were tested in vivo as single agent or in combination in the rat orthotopic Schwarm chondrosarcoma model, in macroscopic phase, as well as with microscopic residual disease. Response to everolimus and/or doxorubicin was evaluated using chondrosarcoma volume evolution (MRI). Histological response was evaluated with % of tumor necrosis, tumor proliferation index, metabolism quantification analysis between the treated and control groups. Statistical analyses were performed using chi square, Fishers exact test. Doxorubicin single agent has no effect of tumor growth as compared to no treatment; conversely, everolimus single agent significantly inhibited tumor progression in macroscopic tumors with no synergistic additive effect with doxorubicin. Everolimus inhibited chondrosarcoma proliferation as evaluated by Ki67 expression did not induce the apoptosis of tumor cells; everolimus reduced Glut1 and 4EBP1 expression. Importantly when given in rats with microscopic residual diseases, in a pseudo neoadjuvant setting, following R1 resection of the implanted tumor, everolimus significantly delayed or prevented tumor recurrence. CONCLUSIONS: MTOR inhibitor everolimus blocks cell proliferation, Glut1 expression and HIF1a expression, and prevents in vivo chondrosarcoma tumor progression in both macroscopic and in adjuvant phase post R1 resection. Taken together, our preclinical data indicate that mTOR inhibitor may be effective as a single agent in treating chondrosarcoma patients. A clinical trial evaluating mTOr inhibitor as neo-adjuvant and adjuvant therapy in chondrosarcoma patients is being constructed
- …