301 research outputs found

    Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD)

    Get PDF
    Benzoporphyrin derivative monoacid ring A (BPD-MA, verteporfin) is currently under investigation as a photosensitizer for photodynamic therapy (PDT). Since BPD exhibits rapid pharmacokinetics in plasma and tissues, we assessed damage to tumour and muscle microvasculature when light treatment for PDT was given at short times after injection of photosensitizer. Groups of rats with chondrosarcoma were given 2 mg kg−1 of BPD intravenously 5 min to 180 min before light treatment of 150 J cm−2 690 nm. Vascular response was monitored using intravital microscopy and tumour cure was monitored by following regrowth over 42 days. For treatment at 5 or 30 min after BPD injection, blood flow stasis was limited to tumour microvasculature with lesser response in the surrounding normal microvasculature, indicating selective targeting for damage. No acute changes were observed in vessels when light was given 180 min after BPD injection. Tumour regression after light treatment occurred in all animals given PDT with BPD. Long-term tumour regression was greater in animals treated 5 min after BPD injection and least in animals given treatment 180 min after drug injection. The correlation between the timing for vascular damage and cure implies that blood flow stasis plays a significant role in PDT-induced tumour destruction. © 1999 Cancer Research Campaig

    A One-Stop Government Prototype Based on Use Cases and Scenarios

    Full text link

    Differential effects of ketoconazole on exposure to temsirolimus following intravenous infusion of temsirolimus

    Get PDF
    Intravenous (i.v.) temsirolimus, a novel inhibitor of mammalian target of rapamycin, is approved for the treatment of advanced renal cell carcinoma and is being studied in patients with mantle cell lymphoma. Because temsirolimus and its primary metabolite, sirolimus, are metabolised by the cytochrome P450 3A4 pathway (CYP3A4), the potential exists for pharmacokinetic (PK) drug interactions with the numerous agents that modulate CYP3A4 isozyme activity. We investigated the effects of ketoconazole, a potent CYP3A4 inhibitor, on the PK profile of i.v. temsirolimus in healthy adults. Coadministration of 400 mg oral ketoconazole with 5 mg i.v. temsirolimus had no significant effect on temsirolimus maximum concentration (Cmax) or area under the concentration curve (AUC). However, mean AUC increased 3.1-fold and AUCsum (sum of temsirolimus plus sirolimus AUCs) increased 2.3-fold compared with temsirolimus alone. A single 5-mg dose of temsirolimus with ketoconazole was well tolerated, and there were no unexpected safety results. Therefore, in cancer patients receiving 25 mg i.v. temsirolimus, concomitant treatment with agents that have strong CYP3A4 inhibition potential should be avoided. If a concomitant strong CYP3A4 inhibitor is necessary, a temsirolimus dose reduction to 12.5 mg weekly should be considered

    Bone growth during rapamycin therapy in young rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapamycin is an effective immunosuppressant widely used to maintain the renal allograft in pediatric patients. Linear growth may be adversely affected in young children since rapamycin has potent anti-proliferative and anti-angiogenic properties.</p> <p>Methods</p> <p>Weanling three week old rats were given rapamycin at 2.5 mg/kg daily by gavage for 2 or 4 weeks and compared to a Control group given equivalent amount of saline. Morphometric measurements and biochemical determinations for serum calcium, phosphate, iPTH, urea nitrogen, creatinine and insulin-growth factor I (IGF-I) were obtained. Histomorphometric analysis of the growth plate cartilage, in-situ hybridization experiments and immunohistochemical studies for various proteins were performed to evaluate for chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption.</p> <p>Results</p> <p>At the end of the 2 weeks, body and tibia length measurements were shorter after rapamycin therapy associated with an enlargement of the hypertrophic zone in the growth plate cartilage. There was a decrease in chondrocyte proliferation assessed by <it>histone-4 </it>and <it>mammalian target of rapamycin </it>(<it>mTOR</it>) expression. A reduction in <it>parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) </it>and an increase in <it>Indian hedgehog </it>(<it>Ihh</it>) expression may explain in part, the increase number of hypertrophic chondrocytes. The number of TRAP positive multinucleated chondro/osteoclasts declined in the chondro-osseous junction with a decrease in the <it>receptor activator of nuclear factor kappa β ligand </it>(<it>RANKL</it>) and <it>vascular endothelial growth factor </it>(<it>VEGF</it>) expression. Although body and tibial length remained short after 4 weeks of rapamycin, changes in the expression of chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption which were significant after 2 weeks of rapamycin improved at the end of 4 weeks.</p> <p>Conclusion</p> <p>When given to young rats, 2 weeks of rapamycin significantly decreased endochondral bone growth. No catch-up growth was demonstrated at the end of 4 weeks, although markers of chondrocyte proliferation and differentiation improved. Clinical studies need to be done to evaluate these changes in growing children.</p

    mTORC1 Inhibition via Rapamycin Promotes Triacylglycerol Lipolysis and Release of Free Fatty Acids in 3T3â L1 Adipocytes

    Full text link
    Signaling by mTOR complex 1 (mTORC1) promotes anabolic cellular processes in response to growth factors, nutrients, and hormonal cues. Numerous clinical trials employing the mTORC1 inhibitor rapamycin (aka sirolimus) to immunoâ suppress patients following organ transplantation have documented the development of hypertriglyceridemia and elevated serum free fatty acids (FFA). We therefore investigated the cellular role of mTORC1 in control of triacylglycerol (TAG) metabolism using cultured murine 3T3â L1 adipocytes. We found that treatment of adipocytes with rapamycin reduced insulinâ stimulated TAG storage ~50%. To determine whether rapamycin reduces TAG storage by upregulating lipolytic rate, we treated adipocytes in the absence and presence of rapamycin and isoproterenol, a β2â adrenergic agonist that activates the cAMP/protein kinase A (PKA) pathway to promote lipolysis. We found that rapamycin augmented isoproterenolâ induced lipolysis without altering cAMP levels. Rapamycin enhanced the isoproterenolâ stimulated phosphorylation of hormone sensitive lipase (HSL) on Serâ 563 (a PKA site), but had no effect on the phosphorylation of HSL S565 (an AMPK site). Additionally, rapamycin did not affect the isoproterenolâ mediated phosphorylation of perilipin, a protein that coats the lipid droplet to initiate lipolysis upon phosphorylation by PKA. These data demonstrate that inhibition of mTORC1 signaling synergizes with the βâ adrenergicâ cAMP/PKA pathway to augment phosphorylation of HSL to promote hormoneâ induced lipolysis. Moreover, they reveal a novel metabolic function for mTORC1; mTORC1 signaling suppresses lipolysis, thus augmenting TAG storage.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141428/1/lipd1089.pd

    Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells

    Get PDF
    We have studied the effects of hypoxia on aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) synthesis in EMT6 monolayer cultures characterized by different cell densities and proliferation rates. Specifically, after ALA incubation under hypoxic or normoxic conditions, we detected spectrofluorometrically the PpIX content of the following populations: (a) low-density exponentially growing cells; (b) high-density fed-plateau cells; and (c) high-density unfed-plateau cells. These populations were selected either for the purpose of comparison with other in vitro studies (low-density exponentially growing cells) or as representatives of tumour regions adjacent to (high-density fed-plateau cells) and further away from (high-density unfed-plateau cells) capillaries. The amount of PpIX per cell produced by each one of these populations was higher after normoxic ALA incubation. The magnitude of the effect of hypoxia on PpIX synthesis was dependent on cell density and proliferation rate. A 42-fold decrease in PpIX fluorescence was observed for the high-density unfed-plateau cells. PpIX production by the low-density exponential cells was affected the least by ALA incubation under hypoxic conditions (1.4-fold decrease), whereas the effect on the high-density fed-plateau population was intermediate (20-fold decrease). © 1999 Cancer Research Campaig

    LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition

    Get PDF
    LKB1/STK11 is a multitasking tumour suppressor kinase. Germline inactivating mutations of the gene are responsible for the Peutz-Jeghers hereditary cancer syndrome. It is also somatically inactivated in approximately 30% of non-small-cell lung cancer (NSCLC). Here, we report that LKB1/KRAS mutant NSCLC cell lines are sensitive to the MEK inhibitor CI-1040 shown by a dose-dependent reduction in proliferation rate, whereas LKB1 and KRAS mutations alone do not confer similar sensitivity. We show that this subset of NSCLC is also sensitised to the mTOR inhibitor rapamycin. Importantly, the data suggest that LKB1/KRAS mutant NSCLCs are a genetically and functionally distinct subset and further suggest that this subset of lung cancers might afford an opportunity for exploitation of anti-MAPK/mTOR-targeted therapies

    Activation of mTOR coincides with autophagy during ligation-induced atrophy in the rat submandibular gland

    Get PDF
    Salivary gland atrophy is a common consequence of pathology, including Sjögren's syndrome, irradiation therapy and obstructive sialadenitis. During severe atrophy of the rat submandibular gland caused by excretory duct ligation, the majority of acinar cells disappear through apoptosis, whereas ductal cells proliferate and dedifferentiate; yet, the gland can survive in the atrophic state almost indefinitely, with an ability to fully recover if deligated. The control mechanisms governing these observations are not well understood. We report that ∼10% of acinar cells survive in ligation-induced atrophy. Microarray and quantitative real-time PCR analysis of ligated glands indicated sustained transcription of acinar cell-specific genes, whereas ductal-specific genes were reduced to background levels. After 3 days of ligation, activation of the mammalian target of rapamycin (mTOR) pathway and autophagy occurred as shown by phosphorylation of 4E-BP1 and expression of autophagy-related proteins. These results suggest that activation of mTOR and the autophagosomal pathway are important mechanisms that may help to preserve acinar cells during atrophy of salivary glands after injury
    corecore