140 research outputs found

    KSHV-Encoded MicroRNAs: Lessons for Viral Cancer Pathogenesis and Emerging Concepts

    Get PDF
    The human genome contains microRNAs (miRNAs), small noncoding RNAs that orchestrate a number of physiologic processes through regulation of gene expression. Burgeoning evidence suggests that dysregulation of miRNAs may promote disease progression and cancer pathogenesis. Virus-encoded miRNAs, exhibiting unique molecular signatures and functions, have been increasingly recognized as contributors to viral cancer pathogenesis. A large segment of the existing knowledge in this area has been generated through characterization of miRNAs encoded by the human gamma-herpesviruses, including the Kaposi's sarcoma-associated herpesvirus (KSHV). Recent studies focusing on KSHV miRNAs have led to a better understanding of viral miRNA expression in human tumors, the identification of novel pathologic check points regulated by viral miRNAs, and new insights for viral miRNA interactions with cellular (“human”) miRNAs. Elucidating the functional effects of inhibiting KSHV miRNAs has also provided a foundation for further translational efforts and consideration of clinical applications. This paper summarizes recent literature outlining mechanisms for KSHV miRNA regulation of cellular function and cancer-associated pathogenesis, as well as implications for interactions between KSHV and human miRNAs that may facilitate cancer progression. Finally, insights are offered for the clinical feasibility of targeting miRNAs as a therapeutic approach for viral cancers

    Nutrition Derived Advanced Glycation End Products Are Bio-Social Determinants of Health That Inform on Cancer Disparities

    Get PDF
    Objectives Through their ability to perpetuate a reactive stroma, the objective was to define the increased nutritional bioavailability of advanced glycation end products (AGEs) as a pro-tumorigenic consequence of interrelated health inequity risk factors that can influence ancestry specific tumor biology. Methods In vivo, ex vivo, and in vitro models were used to define the molecular effects of nutrition associated AGEs on the ancestry specific tumor microenvironment and tumor growth. Results The PI’s work provides the first in vivo evidence supporting an oncogenic role for AGEs. In mouse allograft models, both the chronic consumption of AGEs and pre-treatment with AGE bound peptide (p\u3c 0.0001) increased prostate tumor growth. In spontaneous tumor models, chronic AGE consumption caused rapid disease progression through prostate intra-epithelial neoplasia (p=0.049) to adenocarcinoma and metastatic disease. Mechanistically, AGEs recapitulated a regulatory program of ‘activated’ stroma similar to that observed in African American prostate tumors. Specifically, increased AGE bioavailability caused receptor for AGE (RAGE) dimerization in resident PCa fibroblasts leading to their activation and the downregulation of matrix regulatory proteins leading to rapid tumor progression. Conclusions When social and biological determinants of health are compromised it may increase nutritional exposure to AGEs and perpetuate a vicious cycle of AGE formation, bioavailability, and pathogenicity. As bio-social determinants of health, AGEs may represent informative and/or functional biomarkers that can be utilized across transdisciplinary studies to address the enduring complexities of cancer disparity

    Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and “self-renewal” through downregulation of agr

    Get PDF
    BACKGROUND: In recent years, Staphylococcus epidermidis ( Se) has become a major nosocomial pathogen and the most common cause of infections of implanted prostheses and other indwelling devices. This is due in part to avid biofilm formation by Se on device surfaces. However, it still remains unknown that how the process of Se biofilm development is associated with relapsed infection in such patients. RESULTS: We have identified clinical Se isolates displaying enhanced biofilm dispersal and self-renewal relative to reference strain. These isolates also exhibit enhanced initial cell attachment, extracellular DNA release, cell autolysis and thicker microcolonies during biofilm development relative to reference strain. Our genetic analyses suggest that these clinical isolates exhibit significant downregulation of RNAIII, the effector molecule of the agr quorum sensing system, and upregulation of the autolysin gene atlE. Isogenic deletion of the agr system in Se 1457 confirmed that agr negatively regulating atlE resulted in enhanced initial cell attachment, extracellular DNA release, cell autolysis and biofilm formation abilities. In contrast, double deletion of agr and atlE significantly abolished these features. CONCLUSIONS: Collectively, these data reveal the role of agr system in long-term biofilm development and pathogenesis during Se caused indwelling devices-related relapsed infection

    MicroRNA-510 mediated negative regulation of Caveolin-1 in fibroblasts promotes aggressive tumor growth

    Get PDF
    IntroductionIn the US, despite the recent decline in breast cancer deaths, a persistent mortality disparity exists between black and white women with breast cancer, with black women having a 41% higher death rate. Several studies are now reporting that racial disparities can exist independent of socioeconomic and standard of care issues, suggesting that biological factors may be involved. Caveolin-1 (Cav1) loss in the tumor stromal compartment is a novel clinical biomarker for predicting poor outcome in breast cancer including triple negative subtype, however the mechanism of Cav1 loss is unknown. We previously identified miR-510-5p as a novel oncomir and propose here that the high levels observed in patients is a novel mechanism leading to stromal Cav1 loss and worse outcomes.MethodsCav1 was identified as a direct target of miR-510-5p through luciferase, western blot and qPCR assays. Stromal cross talk between epithelial cells and fibroblasts was assessed in vitro using transwell co-culture assays and in vivo using xenograft assays.ResultsWe found that Cav1 is a direct target of miR-510-5p and that expression in fibroblasts results in an ‘activated’ phenotype. We propose that this could be important in the context of cancer disparities as we also observed increased levels of circulating miR-510-5p and reduced levels of stromal Cav1 in black women compared to white women with breast cancer. Finally, we observed a significant increase in tumor growth when tumor cells were co-injected with miR-510-5p expressing cancer associated fibroblasts in vivo.ConclusionWe propose that miR-510-5p mediated negative regulation of Cav1 in fibroblasts is a novel mechanism of aggressive tumor growth and may be a driver of breast cancer disparity

    Hantavirus infection in type I interferon receptor-deficient (A129) mice.

    Get PDF
    Type I interferon receptor knockout mice (strain A129) were assessed as a disease model of hantavirus infection. A range of infection routes (intramuscular, intraperitoneal and intranasal) were assessed using minimally passaged Seoul virus (strain Humber). Dissemination of virus to the spleen, kidney and lung was observed at 5 days after intramuscular and intraperitoneal challenge, which was resolved by day 14. In contrast, intranasal challenge of A129 mice demonstrated virus tropism to the lung, which was maintained to day 14 post-challenge. These data support the use of the A129 mouse model for future infection studies and the in vivo evaluation of interventions

    Towards quantification of protective antibody responses by passive transfer of the 1st WHO International Standard for Ebola virus antibody in a guinea pig model.

    Get PDF
    Ebola virus (EBOV) represents a major concern to global health due to the unpredictable nature of outbreaks. Infection with EBOV can cause a severe viral haemorrhagic fever with no licensed vaccine or treatment, restricting work with live EBOV to Containment/Biosafety Level 4 facilities. Whilst the magnitude of recent outbreaks has provided an impetus for vaccine and antiviral development, establishing the efficacy of candidate vaccine materials relies on EBOV challenge models and advanced human trials should outbreaks occur and where logistics and funding allow. To address these hurdles in vaccine development, we investigated whether a recently established serological reference standard, the 1st WHO International Standard for Ebola virus antibody, could be used to provide a quantifiable correlate of immune protection in vivo. Dilutions of the International Standard were inoculated into naïve guinea pigs 24 h before challenge with a lethal dose of Ebola virus. Only subjects receiving the highest dose of the International Standard exhibited evidence of delayed progression. Due to it being a WHO established reagent and available globally upon request, this standard allows for effective comparisons of data between laboratories and may prove valuable to select the candidate vaccines that are most likely to confer humoral immune protection ensuring the most promising candidates progress into efficacy studies

    X-ray inactivation of RNA viruses without loss of biological characteristics.

    Get PDF
    In the event of an unpredictable viral outbreak requiring high/maximum biosafety containment facilities (i.e. BSL3 and BSL4), X-ray irradiation has the potential to relieve pressures on conventional diagnostic bottlenecks and expediate work at lower containment. Guided by Monte Carlo modelling and in vitro 1-log10 decimal-reduction value (D-value) predictions, the X-ray photon energies required for the effective inactivation of zoonotic viruses belonging to the medically important families of Flaviviridae, Nairoviridae, Phenuiviridae and Togaviridae are demonstrated. Specifically, it is shown that an optimized irradiation approach is attractive for use in a multitude of downstream detection and functional assays, as it preserves key biochemical and immunological properties. This study provides evidence that X-ray irradiation can support emergency preparedness, outbreak response and front-line diagnostics in a safe, reproducible and scalable manner pertinent to operations that are otherwise restricted to higher containment BSL3 or BSL4 laboratories

    Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer

    Full text link
    Abstract Background Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. Methods Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. Results Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. Conclusions These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.https://deepblue.lib.umich.edu/bitstream/2027.42/149184/1/12885_2019_Article_5667.pd

    Methods of a national colorectal cancer cohort study: the PIPER Project

    Get PDF
    A national study looking at bowel cancer in New Zealand has previously been completed (the PIPER Project). The study included 5,610 patients and collected medical information about how each person was found to have bowel cancer and the treatment they received. This paper reports how the study was carried out. The information collected in the study will be used to look at the quality of care being provided to New Zealand patients with bowel cancer, and to find out if differences in care occur based on where people live, their ethnicity and their socioeconomic status

    The recovery of North Atlantic right whales, Eubalaena glacialis, has been constrained by human-caused mortality

    Get PDF
    North Atlantic right whales (NARW), Eubalaena glacialis, were nearly exterminated by historical whaling. Their abundance slowly increased up until 2010, to a maximum of fewer than 500 whales, and since then they have been in decline. We assessed the extent to which the relatively slow increase demonstrated by NARW was intrinsic, and how much could be due to anthropogenic impacts. In order to do so, we first compared calf counts of three populations of Southern right whales (SRW), E. australis, with that of NARW, over the period 1992–2016. By this index, the annual rate of increase of NARW was approximately one-third of that of SRW. Next we constructed a population projection model for female NARW, using the highest annual survival estimates available from recent mark–resight analysis, and assuming a four-year calving interval. The model results indicated an intrinsic rate of increase of 4% per year, approximately twice that observed, and that adult female mortality is the main factor influencing this rate. Necropsy records demonstrate that anthropogenic mortality is the primary cause of known mortality of NARW. Anthropogenic mortality and morbidity has limited the recovery of NARW, and baseline conditions prior to their recent decline were already jeopardizing NARW recovery.The North Atlantic Right Whale Catalog is maintained with support from ongoing contracts from NOAA Fisheries. J.B. has been funded since at least 1993 by various Australian Government Environment Agencies, since 2015 the National Environment Marine Sciences Program, Marine Diversity Hub. K.F. thanks the Island Foundation for support during the collection of the South African aerial survey data between 2012 and 2015. Various institutions funded the South African aerial surveys over the data collection period, including Moby Dick Rum, Exclusive Trust, the Island Foundation, the National Research Foundation, members of the Offshore Petroleum Association of South Africa and the International Whaling Commission. The Brazilian Right Whale Catalog have been supported by several companies through funding to Projeto Baleia Franca, in particular PETROBRAS Brazilian Oil Company and Santos Brasil Company. V.R. thanks the many individuals and non-profit organizations who funded the 47 years of aerial surveys of the Argentine right whales, in particular Sarah Haney for her support in many of our lean years. V.R.’s research permits were issued annually by the Direccio´n de Fauna y Flora Silvestre and the Subsecretarı´a de Turismo y A ´ reas Protegidas of Chubut Province, Argentina.http://rsos.royalsocietypublishing.orgam2019Mammal Research InstituteZoology and Entomolog
    corecore