7,997 research outputs found

    Influence of crystallographic orientation of biogenic calcite on <i>in situ</i> Mg XANES analyses

    Get PDF
    Micro X-ray absorption near-edge spectroscopy at the Mg &lt;i&gt;K&lt;/i&gt;-edge is a useful technique for acquiring information about the environment of Mg&lt;sup&gt;2+&lt;/sup&gt; in biogenic calcite. These analyses can be applied to shell powders or intact shell structures. The advantage of the latter is that the XANES analyses can be applied to specific areas, at high (e.g. micrometre) spatial resolution, to determine the environment of Mg&lt;sup&gt;2+&lt;/sup&gt; in a biomineral context. Such in situ synchrotron analysis has to take into account the potential effect of crystallographic orientation given the anisotropy of calcite crystals and the polarized nature of X-rays. Brachiopod shells of species with different crystallographic orientations are used to assess this crystallographic effect on &lt;i&gt;in situ&lt;/i&gt; synchrotron measurements at the Mg &lt;i&gt;K&lt;/i&gt;-edge. Results show that, owing to the anisotropy of calcite, &lt;i&gt;in situ&lt;/i&gt; X-ray absorption spectra (XAS) are influenced by the crystallographic orientation of calcite crystals with a subsequent potentially erroneous interpretation of Mg&lt;sup&gt;2+&lt;/sup&gt; data. Thus, this study demonstrates the importance of crystallography for XAS analyses and, therefore, the necessity to obtain crystallographic information at high spatial resolution prior to spectroscopic analysis

    Scalar Top Quark Studies with Various Visible Energies

    Get PDF
    The precision determination of scalar top quark properties will play an important role at a future International Linear Collider (ILC). Recent and ongoing studies are discussed for different experimental topologies in the detector. First results are presented for small mass differences between the scalar top and neutralino masses. This corresponds to a small expected visible energy in the detector. An ILC will be a unique accelerator to explore this scenario. In addition to finding the existence of light stop quarks, the precise measurement of their properties is crucial for testing their impact on the dark matter relic abundance and the mechanism of electroweak baryogenesis. Significant sensitivity for mass differences down to 5 GeV are obtained. The simulation is based on a fast and realistic detector simulation. A vertex detector concept of the Linear Collider Flavor Identification (LCFI)collaboration, which studies pixel detectors for heavy quark flavour identification, is implemented in the simulations for c-quark tagging. The study extends simulations for large mass differences (large visible energy) for which aspects of different detector simulations, the vertex detector design, and different methods for the determination of the scalar top mass are discussed. Based on the detailed simulations we study the uncertainties for the dark matter density predictions and their estimated uncertainties from various sources. In the region of parameters where stop-neutralino co-annihilation leads to a value of the relic density consistent with experimental results, as precisely determined by the Wilkinson Microwave Anisotropy Probe (WMAP), the stop-neutralino mass difference is small and the ILC will be able to explore this region efficiently.Comment: 11 pages, 11 figures, presented at SUSY'0

    A series solution and a fast algorithm for the inversion of the spherical mean Radon transform

    Full text link
    An explicit series solution is proposed for the inversion of the spherical mean Radon transform. Such an inversion is required in problems of thermo- and photo- acoustic tomography. Closed-form inversion formulae are currently known only for the case when the centers of the integration spheres lie on a sphere surrounding the support of the unknown function, or on certain unbounded surfaces. Our approach results in an explicit series solution for any closed measuring surface surrounding a region for which the eigenfunctions of the Dirichlet Laplacian are explicitly known - such as, for example, cube, finite cylinder, half-sphere etc. In addition, we present a fast reconstruction algorithm applicable in the case when the detectors (the centers of the integration spheres) lie on a surface of a cube. This algorithm reconsrtucts 3-D images thousands times faster than backprojection-type methods

    Reconstruction of deglacial sea surface temperatures in the tropical Pacific from selective analysis of a fossil coral

    Get PDF
    The Sr/Ca of coral skeletons demonstrates potential as an indicator of sea surface temperatures (SSTs). However, the glacial-interglacial SST ranges predicted from Sr/Ca of fossil corals are usually higher than from other marine proxies. We observed infilling of secondary aragonite, characterised by high Sr/Ca ratios, along intraskeletal pores of a fossil coral from Papua New Guinea that grew during the penultimate deglaciation (130 +/- 2 ka). Selective microanalysis of unaltered areas of the fossil coral indicates that SSTs at similar to 130 ka were &lt;= 1 degrees C cooler than at present in contrast with bulk measurements ( combining infilled and unaltered areas) which indicate a difference of 6-7 degrees C. The analysis of unaltered areas of fossil skeletons by microprobe techniques may offer a route to more accurate reconstruction of past SSTs.</p

    The spectrum of large powers of the Laplacian in bounded domains

    Full text link
    We present exact results for the spectrum of the Nth power of the Laplacian in a bounded domain. We begin with the one dimensional case and show that the whole spectrum can be obtained in the limit of large N. We also show that it is a useful numerical approach valid for any N. Finally, we discuss implications of this work and present its possible extensions for non integer N and for 3D Laplacian problems.Comment: 13 pages, 2 figure
    • …
    corecore