74 research outputs found

    A homogeneous aa index: 2. hemispheric asymmetries and the equinoctial variation

    Get PDF
    Paper 1 [Lockwood et al., 2018] generated annual means of a new version of the aa geomagnetic activity index which includes corrections for secular drift in the geographic coordinates of the auroral oval, thereby resolving the difference between the centennial-scale change in the northern and southern hemisphere indices, aaN and aaS. However, other hemispheric asymmetries in the aa index remain: in particular, the distributions of 3-hourly aaN and aaS values are different and the correlation between them is not high on this timescale (r = 0.66). In the present paper, a location-dependant station sensitivity model is developed using the am index (derived from a much more extensive network of stations in both hemispheres) and used to reduce the difference between the hemispheric aa indices and improve their correlation (to r = 0.79) by generating corrected 3-hourly hemispheric indices, aaHN and aaHS, which also include the secular drift corrections detailed in Paper 1. These are combined into a new, “homogeneous” aa index, aaH. It is shown that aaH, unlike aa, reveals the “equinoctial”-like time-of-day/time-of-year pattern that is found for the am index

    Time-of-day/time-of-year response functions of planetary geomagnetic indices

    Get PDF
    Aims: To elucidate differences between commonly-used mid-latitude geomagnetic indices and study quantitatively the differences in their responses to solar forcing as a function of Universal Time (UT), time-of-year (F), and solar-terrestrial activity level. To identify the strengths, weaknesses and applicability of each index and investigate ways to correct for any weaknesses without damaging their strengths. Methods: We model how the location of a geomagnetic observatory influences its sensitivity to solar forcing. This modelling for a single station can then be applied to indices that employ analytic algorithms to combine data from different stations and thereby we derive the patterns of response of the indices as a function of UT, F and activity level. The model allows for effects of solar zenith angle on ionospheric conductivity and of the station’s proximity to the midnight-sector auroral oval: it employs coefficients that are derived iteratively by comparing data from the current aa index stations (Hartland and Canberra) to simultaneous values of the am index, constructed from chains of stations in both hemispheres. This is done separately for 8 overlapping bands of activity level, as quantified by the am index. Initial estimates were obtained by assuming the am response is independent of both F and UT and the coefficients so derived were then used to compute a corrected F-UT response pattern for am. This cycle was repeated until it resulted in changes in predicted values that were below the adopted uncertainty level (0.001%). The ideal response pattern of an index would be uniform and linear (i.e., independent of both UT and F and the same at all activity levels). We quantify the response uniformity using the percentage variation at any activity level, V = 100(S/), where S is the index’s sensitivity at that activity level and S is the standard deviation of S: both S and S were computed using the 8 UT ranges of the 3-hourly indices and 20 equal-width ranges of F. As an overall metric of index performance, we take an occurrence-weighted mean of V, Vav, over the 8 activity-level bins. This metric would ideally be zero and a large value shows that the index compilation is introducing large spurious UT and/or F variations into the data. We also study index performance by comparisons with the SME and SML indices, compiled from a very large number of stations, and with an optimum solar wind “coupling function”, derived from simultaneous interplanetary observations. Results: It is shown that a station’s response patterns depend strongly on the level of geomagnetic activity because at low activity levels the effect of solar zenith angle on ionospheric conductivity dominates over the effect of station proximity to the midnight-sector auroral oval, whereas the converse applies at high activity levels. The metric Vav for the two-station aa index is modelled to be 8.95%, whereas for the multi-station am index it is 0.65%. The ap (and hence Kp) index cannot be analyzed directly this way because its construction employs tabular conversions, but the very low Vav for am allows us to use / to evaluate the UT-F response patterns for ap. This yields Vav = 11.20% for ap. The same empirical test applied to the classical aa index and the new “homogenous” aa index, aaH (derived from aa using the station sensitivity model), yields Vav of, respectively, 10.62% (i.e., slightly higher than the modelled value) and 5.54%. The ap index value of Vav is shown to be high because it exaggerates the average semi-annual variation and has an annual variation giving a lower average response in northern hemisphere winter. It also contains a strong artefact UT variation. We derive an algorithm for correcting for this uneven response which gives a corrected ap value, apC, for which Vav is reduced to 1.78%. The unevenness of the ap response arises from the dominance of European stations in the network used and the fact that all data are referred to a European station (Niemegk). However, in other contexts, this is a strength of ap, because averaging similar data gives increased sensitivity and more accurate values on annual timescales, for which the UT-F response pattern is averaged out

    Radiation and the Risk of Chronic Lymphocytic and Other Leukemias among Chornobyl Cleanup Workers

    Get PDF
    Background: Risks of most types of leukemia from exposure to acute high doses of ionizing radiation are well known, but risks associated with protracted exposures, as well as associations between radiation and chronic lymphocytic leukemia (CLL), are not clear.
 Objectives: We estimated relative risks of CLL and non-CLL from protracted exposures to low-dose ionizing radiation.
 Methods: A nested case–control study was conducted in a cohort of 110,645 Ukrainian cleanup workers of the 1986 Chornobyl nuclear power plant accident. Cases of incident leukemia diagnosed in 1986–2006 were confirmed by a panel of expert hematologists/hematopathologists. Controls were matched to cases on place of residence and year of birth. We estimated individual bone marrow radiation doses by the Realistic Analytical Dose Reconstruction with Uncertainty Estimation (RADRUE) method. We then used a conditional logistic regression model to estimate excess relative risk of leukemia per gray (ERR/Gy) of radiation dose.
 Results: We found a significant linear dose response for all leukemia [137 cases, ERR/Gy = 1.26 (95% CI: 0.03, 3.58]. There were nonsignificant positive dose responses for both CLL and non-CLL (ERR/Gy = 0.76 and 1.87, respectively). In our primary analysis excluding 20 cases with direct in-person interviews less than 2 years from start of chemotherapy with an anomalous finding of ERR/Gy = –0.47 (95% CI: less than –0.47, 1.02), the ERR/Gy for the remaining 117 cases was 2.38 (95% CI: 0.49, 5.87). For CLL, the ERR/Gy was 2.58 (95% CI: 0.02, 8.43), and for non-CLL, ERR/Gy was 2.21 (95% CI: 0.05, 7.61). Altogether, 16% of leukemia cases (18% of CLL, 15% of non-CLL) were attributed to radiation exposure.
 Conclusions: Exposure to low doses and to low dose-rates of radiation from post-Chornobyl cleanup work was associated with a significant increase in risk of leukemia, which was statistically consistent with estimates for the Japanese atomic bomb survivors. Based on the primary analysis, we conclude that CLL and non-CLL are both radiosensitive.

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVbh^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    First measurement of the quark-to-photon fragmentation function

    Get PDF

    Production of excited beauty states in Z decays

    Get PDF
    A data sample of about 3.0 million hadronic Z decays collected by the ALEPH experiment at LEP in the years 1991 through 1994, is used to make an inclusive selection of B~hadron events. In this event sample 4227 \pm 140 \pm 252 B^* mesons in the decay B^* \to B \gamma and 1944 \pm 108 \pm 161 B^{**} mesons decaying into a B~meson and a charged pion are reconstructed. For the well established B^* meson the following quantities areobtained: \Delta M = M_{B^*} - M_{B} = (45.30\pm 0.35\pm 0.87)~\mathrm{MeV}/c^2 and N_{B^*}/(N_B+N_{B^*}) = (77.1 \pm 2.6 \pm 7.0)\%. The angular distribution of the photons in the B^* rest frame is used to measure the relative contribution of longitudinal B^* polarization states to be \sigma_L/(\sigma_L + \sigma_T)= (33 \pm 6 \pm 5)\%. \\ Resonance structure in the M(B\pi)-M(B) mass difference is observed at (424 \pm 4 \pm 10)~\mathrm{MeV}/c^2. Its shape and position is in agreement with the expectation for B^{**}_{u,d} states decaying into B_{u,d}^{(*)} \pi^\pm. The signal is therefore interpreted as arising from them. The relative production rate is determined to be \frac{BR(Z \to b \to B_{u,d}^{**})}{BR(Z \to b \to B_{u,d})} = [27.9 \pm 1.6(stat) \pm 5.9(syst) \phantom{a}^{+3.9}_{-5.6}(model)]\%. where the third error reflects the uncertainty due to different production and decay models for the broad B_{u,d}^{**} states

    Improved tau polarisation measurement

    Get PDF

    Inclusive production of neutral vector mesons in hadronic Z decays

    Get PDF

    Search for R-Parity Violating Decays of Supersymmetric Particles in e+ee^{+}e^{-} Collisions at Centre-of-Mass Energies near 183 GeV

    Get PDF
    Searches for pair-production of supersymmetric particles under the assumption that R-parity is violated via a single dominant LLEˉLL{\bar E}, LQDˉLQ{\bar D} or UˉDˉDˉ{\bar U} {\bar D} {\bar D} coupling are performed using the data collected by the \ALEPH\ collaboration at centre-of-mass energies of 181--184~\gev. The observed candidate events in the data are in agreement with the Standard Model expectations. Upper limits on the production cross-sections and lower limits on the masses of charginos, sleptons, squarks and sneutrinos are de rived

    Tau hadronic branching ratios

    Get PDF
    From 64492 selected \tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \tau-\mu universality in hadronic decays, g_\tau/g_\mu \ = \ 1.0013 \ \pm \ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \tau decay width: R_{\tau ,V} \ = \ 1.788 \ \pm \ 0.025 and R_{\tau ,A} \ = \ 1.694 \ \pm \ 0.027. The ratio (R_{\tau ,V} - R_{\tau ,A}) / (R_{\tau ,V} + R_{\tau ,A}), equal to (2.7 \pm 1.3) \ \%, is a measure of the importance of QCD non-perturbative contributions to the hadronic \tau decay widt
    corecore