5,662 research outputs found

    Scalar Top Quark Studies with Various Visible Energies

    Get PDF
    The precision determination of scalar top quark properties will play an important role at a future International Linear Collider (ILC). Recent and ongoing studies are discussed for different experimental topologies in the detector. First results are presented for small mass differences between the scalar top and neutralino masses. This corresponds to a small expected visible energy in the detector. An ILC will be a unique accelerator to explore this scenario. In addition to finding the existence of light stop quarks, the precise measurement of their properties is crucial for testing their impact on the dark matter relic abundance and the mechanism of electroweak baryogenesis. Significant sensitivity for mass differences down to 5 GeV are obtained. The simulation is based on a fast and realistic detector simulation. A vertex detector concept of the Linear Collider Flavor Identification (LCFI)collaboration, which studies pixel detectors for heavy quark flavour identification, is implemented in the simulations for c-quark tagging. The study extends simulations for large mass differences (large visible energy) for which aspects of different detector simulations, the vertex detector design, and different methods for the determination of the scalar top mass are discussed. Based on the detailed simulations we study the uncertainties for the dark matter density predictions and their estimated uncertainties from various sources. In the region of parameters where stop-neutralino co-annihilation leads to a value of the relic density consistent with experimental results, as precisely determined by the Wilkinson Microwave Anisotropy Probe (WMAP), the stop-neutralino mass difference is small and the ILC will be able to explore this region efficiently.Comment: 11 pages, 11 figures, presented at SUSY'0

    Secondary school admissions

    Get PDF

    The Solar Neighborhood XV: Discovery of New High Proper Motion Stars with mu >= 0.4"/yr between Declinations -47 degrees and 00 degrees

    Full text link
    We report the discovery of 152 new high proper motion systems (mu >= 0.4"/yr) in the southern sky (Declination = -47 degrees to 00 degrees) brighter than UKST plate R_{59F} =16.5 via our SuperCOSMOS-RECONS (SCR) search. This paper complements Paper XII in The Solar Neighborhood series, which covered the region from Declination = -90 degrees to -47 degrees and discussed all 147 new systems from the southernmost phase of the search. Among the total of 299 systems from both papers, there are 148 (71 in Paper XII, 77 in this paper) new systems moving faster than 0.5"/yr that are additions to the classic ``LHS'' (Luyten Half Second) sample. These constitute an 8% increase in the sample of all stellar systems with mu >= 0.5"/yr in the southern sky. As in Paper XII, distance estimates are provided for the systems reported here based upon a combination of photographic plate magnitudes and 2MASS photometry, assuming all stars are on the main sequence. Two SCR systems from the portion of the sky included in this paper are anticipated to be within 10 pc, and an additional 23 are within 25 pc. In total, the results presented in Paper XII and here for this SCR sweep of the entire southern sky include five new systems within 10 pc and 38 more between 10 and 25 pc. The largest number of nearby systems have been found in the slowest proper motion bin, 0.6"/yr > mu >= 0.4"/yr, indicating that there may be a large population of low proper motion systems very near the Sun.Comment: 36 pages, 5 figures, accepted for publication in Astronomical Journa

    New Monte Carlo method for planar Poisson-Voronoi cells

    Full text link
    By a new Monte Carlo algorithm we evaluate the sidedness probability p_n of a planar Poisson-Voronoi cell in the range 3 \leq n \leq 1600. The algorithm is developed on the basis of earlier theoretical work; it exploits, in particular, the known asymptotic behavior of p_n as n\to\infty. Our p_n values all have between four and six significant digits. Accurate n dependent averages, second moments, and variances are obtained for the cell area and the cell perimeter. The numerical large n behavior of these quantities is analyzed in terms of asymptotic power series in 1/n. Snapshots are shown of typical occurrences of extremely rare events implicating cells of up to n=1600 sides embedded in an ordinary Poisson-Voronoi diagram. We reveal and discuss the characteristic features of such many-sided cells and their immediate environment. Their relevance for observable properties is stressed.Comment: 35 pages including 10 figures and 4 table

    Solution generating theorems for perfect fluid spheres

    Get PDF
    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.Comment: 8 pages, no figures, to appear in the proceedings of the NEB XII Conference (Recent Developments in Gravity), 29 June - 2 July, 2006, Napflio, Greec

    From spin to anyon notation: The XXZ Heisenberg model as a D3D_{3} (or su(2)4su(2)_{4}) anyon chain

    Full text link
    We discuss a relationship between certain one-dimensional quantum spin chains and anyon chains. In particular we show how the XXZ Heisenberg chain is realised as a D3D_{3} (alternately su(2)4su(2)_{4}) anyon model. We find the difference between the models lie primarily in choice of boundary condition.Comment: 13 page

    Adaptive significance of functional germination traits in crop wild relatives of Brassica

    Get PDF
    Functional germination traits contribute to both niche competitiveness and crop yield outcomes. However, there is little understanding of the adaptive significance of the germination thermal- and hydro-parameters in crop wild relatives (CWRs), yet these species are anticipated to be the source of adaptive traits for future agriculture. Seeds of 10 seed lots of Brassica species, sub-species and inbred lines from across Europe, North Africa and the Middle East were subjected to a range of temperature and water potential conditions. The germination progress curves recorded were analysed using repeated probit analysis and the functional trait parameters (thermal- and hydro thresholds and times) determined. Relationships between these seed parameters (and the physical trait, seed mass) and the seed source environment were investigated
    • …
    corecore