18 research outputs found

    Pułapki i wyzwania w badaniach nad skutecznością komputerowych treningów poznawczych

    Get PDF
    Pitfalls and challenges in studies on the effectiveness of computerized cognitive trainingIn recent years, in both science and business, we observe an increased interest in using of various types of software and computer games to improve human cognitive abilities. Paradoxically, together with an increasing number of studies proving the effectiveness of this type of computerized cognitive training, is also growing number of reports about the lack of its beneficial effects. In this situation many doubts are raised by methodology used in training studies, especially poorly matched control groups, and inadequate monitoring of the placebo effect. In this article I will present the most important issues and challenges facing today’s research on computerized cognitive training

    Brain activity underlying response induced by SNARC-congruent and SNARC-incongruent stimuli

    Get PDF
    At least three well‑documented phenomena indicate a relationship between numbers and the internal representation of space. They are shifting attention in accordance with the localization of numbers on the mental number line (MNL); the spatial‑numerical association of response codes (SNARC) effect, which manifests as faster responses to high numbers with the right hand than with the left, and vice versa for low numbers; and the processing of both numbers and space primarily in the parietal cortex. Some EEG studies have pointed to the response selection stage as a locus of this effect. However, this explanation has yet to be corroborated by the fMRI experiments.The goal of this study was to investigate the functional anatomy underlying response selection induced by SNARC‑congruent and SNARC-incongruent stimuli in a spatial visual cueing task. Healthy adult volunteers responded to a pair of target stimuli consisting of digits, non-digit symbols, or a mix of both. In each trial, the stimuli were preceded by a centrally presented numerical or non-numerical cue stimulus which was required to be memorized. One of the target stimuli that then appeared would be identical to the cue; the task was to determine which side it was presented on, within the pair. In the case of numerical stimuli, the side was congruent with its localization on the MNL in one‑half of the trials. In the other half of the trials, it was incongruent. The behavioral results revealed the SNARC effect, as well as a faster reaction to low numbers than to high numbers. The fMRI responses to the target stimuli showed engagement of regions implicated in number processing but also in sensory-motor areas. This suggests that the motor response selection or execution stage may be the locus of the SNARC effect. Yet, the activation pattern obtained in the congruent and incongruent conditions did not allow us to determine, indisputably, the neural correlates of the mechanisms involved in the SNARC effect. Moreover, we did not observe any stimulus-specific responses to cues

    Spatiotemporal complexity patterns of resting‐state bioelectrical activity explain fluid intelligence : sex matters

    Get PDF
    Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting‐state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6‐min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo‐parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro‐temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing

    Analysis of task-based functional MRI data preprocessed with fMRIPrep

    Full text link
    Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time consuming, error prone and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep (http://fmriprep.org), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure to standardize both the input datasets (MRI data as stored by the scanner) and the outputs (data ready for modeling and analysis), fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep, this protocol describes how to integrate the tool in a task-based fMRI investigation workflow

    The response relevance of visual stimuli modulate the P3 component and the underlying sensorimotor network

    Get PDF
    The functional meaning and neural basis of the P3b component of ERPs are still under debate. One of the main issues is whether P3b reflects only stimulus-related processes (stimulus evaluation hypothesis) or response-related processes as well (stimulus-response or S-R link activation hypothesis). Here, we conducted an EEG experiment examining whether P3b may indeed reflect an S-R link activation, followed by an fMRI experiment in which we explored the brain areas and functional connectivity possibly constituting the neural basis of these sensorimotor links. In both experiments, two successive visual stimuli, S1 and S2, were presented with a 1 sec interval, and responses were defined either by S1 or S2, while participants responded only after S2 onset. The obtained EEG results suggest that P3b may be interpreted in terms of the S-R link activation account, although further studies are needed to disentangle P3-related activity from overlapping anticipatory activity. The obtained fMRI results showed that processing of the relevant S1 involved activation of a distributed postero-anterior sensorimotor network, and increased strength of functional connectivity within this network. This network may underlie activation of the S-R links, thus possibly also the P3b component, forming a bridging step between sensory encoding and response execution.info:eu-repo/semantics/publishe

    The levels of perceptual processing and the neural correlates of increasing subjective visibility

    No full text
    According to the levels-of-processing hypothesis, transitions from unconscious to conscious perception may depend on stimulus processing level, with more gradual changes for low-level stimuli and more dichotomous changes for high-level stimuli. In an event-related fMRI study we explored this hypothesis using a visual backward masking procedure. Task requirements ma- nipulated level of processing. Participants reported the magnitude of the target digit in the high- level task, its color in the low-level task, and rated subjective visibility of stimuli using the Perceptual Awareness Scale. Intermediate stimulus visibility was reported more frequently in the low-level task, confirming prior behavioral results. Visible targets recruited insulo-fronto-parietal regions in both tasks. Task effects were observed in visual areas, with higher activity in the low- level task across all visibility levels. Thus, the influence of level of processing on conscious perception may be mediated by attentional modulation of activity in regions representing fea- tures of consciously experienced stimuli.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Author Correction: Dynamic reconfiguration of functional brain networks during working memory training

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    The Dancing Brain: Structural and Functional Signatures of Expert Dance Training

    No full text
    Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations
    corecore