17 research outputs found

    Low-thrust guidance study Final report

    Get PDF
    Computer algorithm to determine minimum-time optimal control for continuous low-thrust propulsion systems operating in inverse-square gravity fiel

    Mission Capabilities of Ion Engines Using SNAP-8 Power Supplies

    Get PDF
    Mission performance capabilities of ion engines powered by the 30 kw and 60 kw SNAP-8 power supplies are compared for the following missions: a 24-hr equatorial satellite, a 100 n mi lunar satellite, a 500 n mi Mars satellite, a Mercury probe, and an out-of-the-ecliptic probe. The capabilities of arc- jet engines and chemical engines for the same missions are compared with those of the ion engines. The majority of the comparisons are for 8500-lb spacecraft which are boosted into a 300 n mi orbit by the Atlas-Centaur. Variations in initial orbit altitude, the use of actual launch dates rather than dates based on simplifying assumptions, and the combined use of chemical and electrical propulsion systems were also evaluated in terms of their effect on mission performance

    Realistic Earth escape strategies for solar sailing

    Get PDF
    With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased

    OPTIMUM MIDCOURSE PLANE CHANGES FOR BALLISTIC INTERPLANETARY TRAJECTORIES

    No full text

    Mission analysis models for power-limited systems

    No full text
    corecore