53 research outputs found

    Aspirin inhibits androgen response to chorionic gonadotropin in humans.

    Get PDF

    A CXCR4 receptor agonist strongly stimulates axonal regeneration after damage

    Get PDF
    Objective: To test whether the signaling axis CXCL12\u3b1-CXCR4 is activated upon crush/cut of the sciatic nerve and to test the activity of NUCC-390, a new CXCR4 agonist, in promoting nerve recovery from damage. Methods: The sciatic nerve was either crushed or cut. Expression and localization of CXCL12\u3b1 and CXCR4 were evaluated by imaging with specific antibodies. Their functional involvement in nerve regeneration was determined by antibody-neutralization of CXCL12\u3b1, and by the CXCR4 specific antagonist AMD3100, using as quantitative read-out the compound muscle action potential (CMAP). NUCC-390 activity on nerve regeneration was determined by imaging and CMAP recordings. Results: CXCR4 is expressed at the injury site within the axonal compartment, whilst its ligand CXCL12\u3b1 is expressed in Schwann cells. The CXCL12\u3b1-CXCR4 axis is involved in the recovery of neurotransmission of the injured nerve. More importantly, the small molecule NUCC-390 is a strong promoter of the functional and anatomical recovery of the nerve, by acting very similarly to CXCL12\u3b1. This pharmacological action is due to the capability of NUCC-390 to foster elongation of motor neuron axons both in vitro and in vivo. Interpretation: Imaging and electrophysiological data provide novel and compelling evidence that the CXCL12\u3b1-CXCR4 axis is involved in sciatic nerve repair after crush/cut. This makes NUCC-390 a strong candidate molecule to stimulate nerve repair by promoting axonal elongation. We propose this molecule to be tested in other models of neuronal damage, to lay the basis for clinical trials on the efficacy of NUCC-390 in peripheral nerve repair in humans

    The M-Machine Multicomputer

    Get PDF
    The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput

    Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy

    Get PDF
    Background: Endemic presence of Klebsiella pneumoniae resistant to carbapenem in Italy has been due principally to the clonal expansion of CC258 isolates; however, recent studies suggest an ongoing epidemiological change in this geographical area. Methods: 50 K. pneumoniae strains, 25 carbapenem-resistant (CR-Kp) and 25 susceptible (CS-Kp), collected from march 2014 to march 2016 at the Laboratory of Bacteriology of the Paolo Giaccone Polyclinic University hospital of Palermo, Italy, were characterized for antibiotic susceptibility and fully sequenced by next generation sequencing (NGS) for the in silico analysis of resistome, virulome, multi-locus sequence typing (MLST) and core single nucleotide polymorphism (SNP) genotypes Results: MLST in silico analysis of CR-Kp showed that 52% of isolates belonged to CC258, followed by ST395 (12%), ST307 (12%), ST392 (8%), ST348 (8%), ST405 (4%) and ST101 (4%). In the CS-Kp group, the most represented isolate was ST405 (20%), followed by ST392 and ST15 (12%), ST395, ST307 and ST1727 (8%). The in silico β-lactamase analysis of the CR-Kp group showed that the most detected gene was blaSHV (100%), followed by blaTEM (92%), blaKPC (88%), blaOXA (88%) and blaCTX-M (32%). The virulome analysis detected mrk operon in all studied isolates, and wzi-2 was found in three CR-Kp isolates (12%). Furthermore, the distribution of virulence genes encoding for the yersiniabactin system, its receptor fyuA and the aerobactin system did not show significant distribution differences between CR-Kp and CS-Kp, whereas the Klebsiella ferrous iron uptake system (kfuA, kfuB and kfuC genes), the two-component system kvgAS and the microcin E495 were significantly (p < 0.05) prevalent in the CS-Kp group compared to the CR-Kp group. Core SNP genotyping, correlating with the MLST data, allowed greater strain tracking and discrimination than MLST analysis. Conclusions: Our data support the idea that an epidemiological change is ongoing in the Palermo area (Sicily, Italy). In addition, our analysis revealed the co-existence of antibiotic resistance and virulence factors in CR-Kp isolates; this characteristic should be considered for future genomic surveillance studies

    A retrospective whole-genome sequencing analysis of carbapenem and colistin-resistant klebsiella pneumoniae nosocomial strains isolated during an MDR surveillance program

    Get PDF
    Multidrug-resistant Klebsiella pneumoniae (MDR Kp), in particular carbapenem-resistant Kp (CR-Kp), has become endemic in Italy, where alarming data have been reported on the spread of colistin-resistant CR-Kp (CRCR-Kp). During the period 2013–2014, 27 CRCR-Kp nosocomial strains were isolated within the Modena University Hospital Policlinico (MUHP) multidrug resistance surveillance program. We retrospectively investigated these isolates by whole-genome sequencing (WGS) analysis of the resistome, virulome, plasmid content, and core single nucleotide polymorphisms (cSNPs) in order to gain insights into their molecular epidemiology. The in silico WGS analysis of the resistome revealed the presence of genes, such as blaKPC, related to the phenotypically detected resistances to carbapenems. Concerning colistin resistance, the plasmidic genes mcr 1–9 were not detected, while known and new genetic variations in mgrB, phoQ, and pmrB were found. The virulome profile revealed the presence of type-3 fimbriae, capsular polysaccharide, and iron acquisition system genes. The detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), ColRNAI, IncX3, and IncFII(K) types. The cSNPs genotyping was consistent with the multi locus sequence typing (MLST) and with the distribution of mutations related to colistin resistance genes. In a nosocomial drug resistance surveillance program, WGS proved to be a useful tool for elucidating the spread dynamics of CRCR-Kp nosocomial strains and could help to limit their diffusion

    Genome-based study of a spatio-temporal cluster of invasive meningococcal disease due to Neisseria meningitidis serogroup C, clonal complex 11

    Get PDF
    Summary Objectives To describe a spatio-temporal cluster of invasive meningococcal disease (IMD) due to serogroup C meningococci, occurred in a restricted area of Tuscany between January and October 2015, and the results of whole genome sequencing (WGS). Methods Surveillance activities and public health measures were implemented in the Region. Bacterial isolates from IMD cases were characterized by the National Reference Laboratory of the Istituto Superiore di Sanita (ISS), and WGS was performed on available strains. The kSNP software was used to identify core genome SNPs. Results Overall, 28 IMD cases due to meningococcus C were identified up to 31st October, 2015. Of them, 26 were due to meningococcus C:P1.5-1,10-8: F3-6:ST-11 (cc11) and 2 to C:P1.5-1,10-8: F3-6:ST-2780 (cc11). WGS of 13 meningococci isolated during the outbreak occurred in Tuscany in 2015 showed higher similarity when compared with those of 47 C: P1.5-1,10-8: F3-6:ST-11 (cc11) invasive strains from sporadic cases previously detected in Italy. Conclusions A highly aggressive meningococcal C strain was involved in the cluster of severe IMD occurred in Tuscany, a Region with high vaccine coverage among children. Whether this was due to low herd immunity related to the short duration of vaccine protection needs further investigation

    Genome-based study of a spatio-temporal cluster of invasive meningococcal disease due to Neisseria meningitidis serogroup C, clonal complex 11

    Get PDF
    SummaryObjectivesTo describe a spatio-temporal cluster of invasive meningococcal disease (IMD) due to serogroup C meningococci, occurred in a restricted area of Tuscany between January and October 2015, and the results of whole genome sequencing (WGS).MethodsSurveillance activities and public health measures were implemented in the Region. Bacterial isolates from IMD cases were characterized by the National Reference Laboratory of the Istituto Superiore di Sanità (ISS), and WGS was performed on available strains. The kSNP software was used to identify core genome SNPs.ResultsOverall, 28 IMD cases due to meningococcus C were identified up to 31st October, 2015. Of them, 26 were due to meningococcus C:P1.5-1,10-8: F3-6:ST-11 (cc11) and 2 to C:P1.5-1,10-8: F3-6:ST-2780 (cc11). WGS of 13 meningococci isolated during the outbreak occurred in Tuscany in 2015 showed higher similarity when compared with those of 47 C: P1.5-1,10-8: F3-6:ST-11 (cc11) invasive strains from sporadic cases previously detected in Italy.ConclusionsA highly aggressive meningococcal C strain was involved in the cluster of severe IMD occurred in Tuscany, a Region with high vaccine coverage among children. Whether this was due to low herd immunity related to the short duration of vaccine protection needs further investigation
    corecore