4,382 research outputs found

    Extended coherent states and modified perturbation theory

    Full text link
    An extended coherent state for describing a system of two interacting quanum objects is considered. A modified perturbation theory based on using the extended coherent states is formulated.Comment: LaTex, 7 pages, no figures, minor correction

    Algebraic Model for scattering in three-s-cluster systems. I. Theoretical Background

    Full text link
    A framework to calculate two-particle matrix elements for fully antisymmetrized three-cluster configurations is presented. The theory is developed for a scattering situation described in terms of the Algebraic Model. This means that the nuclear many-particle state and its asymptotic behaviour are expanded in terms of oscillator states of the intra-cluster coordinates. The Generating Function technique is used to optimize the calculation of matrix elements. In order to derive the dynamical equations, a multichannel version of the Algebraic Model is presented.Comment: 20 pages, 1 postscript figure, submitted to Phys. Rev.

    Study of the mechanism for solar wind formation

    Get PDF
    Observations of the corona and solar wind are analyzed and compared with generalized results derived from laboratory-scale experiments. It was shown that a thermal pressure gradient can make a major contribution to a precipitating plasma of the solar wind emanating from coronal holes. It is found that the divergence Phi = (R/R sub solar radius)f of the magnetic field lines, originating from coronal holes, is one of the factors governing solar wind velocity at Earth orbit (R= 1 AU). A decrease in the velocity V sub R = 1 AU from approx = 750 mk/sec down to approx = 450 km/sec may be attributable to an increase in superradial divergence f from approx = 7-9 to 20. The plasma energy flux density F at the base of the coronal holes representing the sources of the solar wind with V sub R=1AE = (450 to 750) km/sec, remains nearly constant, being F approx = (1.4 +/- 0.3) x 10 to the 6th power x ergs/sq cm/sec for the period 1973-1975

    Probability representation and quantumness tests for qudits and two-mode light states

    Full text link
    Using tomographic-probability representation of spin states, quantum behavior of qudits is examined. For a general j-qudit state we propose an explicit formula of quantumness witnetness whose negative average value is incompatible with classical statistical model. Probability representations of quantum and classical (2j+1)-level systems are compared within the framework of quantumness tests. Trough employing Jordan-Schwinger map the method is extended to check quantumness of two-mode light states.Comment: 5 pages, 2 figures, PDFLaTeX, Contribution to the 11th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'09), June 22-26, 2009, Olomouc, Czech Republi
    • …
    corecore