10 research outputs found

    乳兒に於ける化膿性骨髄炎の統計的觀察

    Get PDF
    Additional file 3: Figure S1. Methylation percentages of the two genes (CASP8 and SCGB3A1) in P, C and PCa samples that were differentially methylated in C and P samples in the training set. The figure highlights a higher methylation percentage for PCa than for healthy samples, but also a higher methylation percentage for P than for C samples in both genes

    Carcinosarcoma of the prostate: case report with molecular and histological characterization

    No full text
    We report a case of prostatic carcinosarcoma, a rare variant of prostatic cancer, which is composed of a mixture of epithelial and mesenchymal components with a generally poor outcome

    GSTP1 Methylation and Protein Expression in Prostate Cancer: Diagnostic Implications

    No full text
    GSTP1 belongs to the GSTs family, a group of enzymes involved in detoxification of exogenous substances and it also plays an important role in cell cycle regulation. Its dysregulation correlates with a large variety of tumors, in particular with prostate cancer. We investigated GSTP1 methylation status with methylation specific PCR (MS-PCR) in prostate cancer (PCa) and in benign tissue of 56 prostatectomies. We also performed immunohistochemistry (IHC) so as to correlate gene methylation with gene silencing. GSTP1 appears methylated in PCa and not in healthy tissue; IHC confirmed that methylation leads to protein underexpression (p<0.001). GSTP1 is highly expressed in basal cell layer and luminal cells in benign glands while in prostatic intraepithelial neoplasia (PIN) it stains only basal cell layer, whereas PCa glands are completely negative. We demonstrated that methylation leads to underexpression of GSTP1. The progressive loss of GSTP1 expression from healthy glands to PIN and to PCa glands underlines its involvement in early carcinogenesis

    Urine Cell-Free DNA Integrity Analysis for Early Detection of Prostate Cancer Patients

    No full text
    Introduction. The detection of tumor-specific markers in urine has paved the way for new early noninvasive diagnostic approaches for prostate cancer. We evaluated the DNA integrity in urine supernatant to verify its capacity to discriminate between prostate cancer and benign diseases of the urogenital tract. Patients and Methods. A total of 131 individuals were enrolled: 67 prostate cancer patients and 64 patients with benign diseases of the urogenital tract (control group). Prostate-specific antigen (PSA) levels were determined. Urine cell-free (UCF) DNA was isolated and sequences longer than 250 bp corresponding to 3 genes (c-MYC, HER2, and AR) were quantified by Real-Time PCR to assess UCF-DNA integrity. Results. UCF-DNA was quantifiable in all samples, while UCF-DNA integrity was evaluable in all but 16 samples. Receiver operating characteristic analysis showed an area under the curve of 0.5048 for UCF-DNA integrity and 0.8423 for PSA. Sensitivity was 0.58 and 0.95 for UCF-DNA integrity and PSA, respectively. Specificity was 0.44 and 0.69, respectively. Conclusions. UCF-DNA integrity showed lower accuracy than PSA and would not seem to be a reliable marker for early prostate cancer diagnosis. Despite this, we believe that UCF-DNA could represent a source of other biomarkers and could detect gene alterations

    Immunotherapy for Prostate Cancer: Where We Are Headed

    No full text
    Prostate cancer is one of the most common malignant neoplasms in men worldwide, and is the fifth cause of cancer-related death. In recent years, a new generation of therapies have been approved for the management of metastatic disease. Moreover, the development of new immunotherapeutic drugs has become a novel frontier for the treatment of several tumor types; to date, numerous studies have investigated their potential activity, including in prostate cancer. In this article, we discuss the role of emerging immunotherapeutic drugs in prostate cancer patients
    corecore