14,620 research outputs found

    Normal state properties of an interacting large polaron gas

    Full text link
    A simple approach to the many-polaron problem for both weak and intermediate electron-phonon coupling and valid for densities much smaller than those typical of metals is presented. Within the model the total energy, the collective modes and the single-particle properties are studied and compared with the available theories. It is shown the occurrence of a charge density wave instability in the intermediate coupling regime.Comment: 26 pages, 12 figures. To appear on European Physical Journal

    Modelling clusters of galaxies by f(R)-gravity

    Full text link
    We consider the possibility that masses and gravitational potentials of galaxy cluster, estimated at X-ray wavelengths, could be explained without assuming huge amounts of dark matter, but in the context of f(R)f(R)-gravity. Specifically, we take into account the weak field limit of such theories and show that the corrected gravitational potential allows to estimate the total mass of a sample of 12 clusters of galaxies. Results show that such a gravitational potential provides a fair fit to the mass of visible matter (i.e. gas + stars) estimated by X-ray observations, without the need of additional dark matter while the size of the clusters, as already observed at different scale for galaxies, strictly depends on the interaction lengths of the corrections to the Newtonian potential.Comment: 18 pages, 34 figure

    May a dissipative environment be beneficial for quantum annealing?

    Full text link
    We discuss the quantum annealing of the fully-connected ferromagnetic p p -spin model in a dissipative environment at low temperature. This model, in the large p p limit, encodes in its ground state the solution to the Grover's problem of searching in unsorted databases. In the framework of the quantum circuit model, a quantum algorithm is known for this task, providing a quadratic speed-up with respect to its best classical counterpart. This improvement is not recovered in adiabatic quantum computation for an isolated quantum processor. We analyze the same problem in the presence of a low-temperature reservoir, using a Markovian quantum master equation in Lindblad form, and we show that a thermal enhancement is achieved in the presence of a zero temperature environment moderately coupled to the quantum annealer.Comment: 4 pages, 1 figure, proceeding of IQIS 201

    Elucidation of the disulfide folding pathway of hirudin by a topology-based approach

    Get PDF
    A theoretical model for the folding of proteins containing disulfide bonds is introduced. The model exploits the knowledge of the native state to favour the progressive establishment of native interactions. At variance with traditional approaches based on native topology, not all native bonds are treated in the same way; in particular, a suitable energy term is introduced to account for the special strength of disulfide bonds (irrespective of whether they are native or not) as well as their ability to undergo intra-molecular reshuffling. The model thus possesses the minimal ingredients necessary to investigated the much debated issue of whether the re-folding process occurs through partially structured intermediates with native or non-native disulfide bonds. This strategy is applied to a context of particular interest, the re-folding process of Hirudin, a thrombin-specific protease inhibitor, for which conflicting folding pathways have been proposed. We show that the only two parameters in the model (temperature and disulfide strength) can be tuned to reproduce well a set of experimental transitions between species with different number of formed disulfide. This model is then used to provide a characterisation of the folding process and a detailed description of the species involved in the rate-limiting step of Hirudin refolding.Comment: 14 pages, 9 figure

    Abell 370: A Cluster with a Pronounced Triaxial Morphology

    Full text link
    We here combine Sunyaev-Zel'dovich effect, X-ray observations and spectroscopic redshifts of member galaxies, to constrain the intrinsic three-dimensional shape of the galaxy cluster: Abell 370. The cluster turns out to be strongly elongated along the l.o.s., with two (or more) substructures in the process of merging. Spectroscopy further suggests that the process must be taking place at a small angle respect to the l.o.s.Comment: 7 pages, 2 figures. Contribution to the Proceedings of the COSPAR Scientific Assembly, E1.2 "Clusters of Galaxies: New Insights from XMM-Newton, Chandra and INTEGRAL", Paris (France), July 19-20, 2004. Accepted for publication in Advances in Space Researc

    Methane dry reforming over nickel perovsikite catalysts

    Get PDF
    In recent years dry reforming of methane (DRM) has received considerable attention as a promising alternative to steam reforming for synthesis gas (H2 and CO) production. This process could be industrially advantageous, yielding a syngas with a H2/CO ratio close to 1, suitable for Fischer-Tropsch synthesis to liquid hydrocarbons and for production of valuable oxygenated chemicals. The major drawback of the process is the endothermicity of the reaction that implies the use of a suitable catalyst to work at relatively low temperatures (923-1,023 K). Higher temperatures would make the process unaffordable for an industrial development and would increase the risk of undesirable side reactions, such as coke formation, that are the main causes of catalyst deactivation. In this work the activity of nickel perovskite catalysts were studied and the results were compared with rhodium perovskite. It is well known that rhodium is very active and stable for dry reforming but its high cost makes its utilization limited. The Ni, due to its low cost, is a promising substitute even if it is more susceptible to coking. The perovskite structure allows a high dispersion of the metal into the catalyst increasing the catalytic activity. In this work the Ni perovskite was obtained with two methods (auto-combustion and modified citrate methods). The results pointed out that the Ni perovskite obtained with the auto-combustion method is a promising route for the use of Ni in this process. The experimental tests show that with Ni catalyst very good activity can be achieved from temperature of 973 K

    Spectral properties and infrared absorption in manganites

    Full text link
    Within a recently proposed variational approach it has been shown that, in La1xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, near the metal-insulator transition, the combined effect of the magnetic and electron-phonon interactions pushes the system toward a regime of two coexisting phases: a low electron density one made by itinerant large polarons forming ferromagnetic domains and a high electron density one made by localized small polarons giving rise to paramagnetic or antiferromagnetic domains depending on temperature. Employing the above-mentioned variational scheme, in this paper spectral and optical properties of manganites are derived for x=0.3x=0.3 at different temperatures. It is found that the phase separation regime induces a robust pseudogap in the excitation spectrum of the system. Then the conductivity spectra are characterized by a transfer of spectral weight from high to low energies, as the temperature TT decreases. In the metallic ferromagnetic phase, at low TT two types of infrared absorption come out: a Drude term and a broad absorption band due respectively to the coherent and incoherent motion of large polarons. The obtained results turn out in good agreement with experiments.Comment: 9 figure

    Steps toward a classifier for the Virtual Observatory. I. Classifying the SDSS photometric archive

    Full text link
    Modern photometric multiband digital surveys produce large amounts of data that, in order to be effectively exploited, need automatic tools capable to extract from photometric data an objective classification. We present here a new method for classifying objects in large multi-parametric photometric data bases, consisting of a combination of a clustering algorithm and a cluster agglomeration tool. The generalization capabilities and the potentialities of this approach are tested against the complexity of the Sloan Digital Sky Survey archive, for which an example of application is reported.Comment: To appear in the Proceedings of the "1st Workshop of Astronomy and Astrophysics for Students" - Naples, 19-20 April 200

    Ballistic transport in one-dimensional loops with Rashba and Dresselhaus spin-orbit coupling

    Get PDF
    We discuss the combined effect of Rashba and Dresselhaus spin-orbit interactions in polygonal loops formed by quantum wires, when the electron are injected in a node and collected at the opposite one. The conditions that allow perfect localization are found. Furthermore, we investigate the suppression of the Al'tshuler--Aronov--Spivak oscillations that appear, in presence of a magnetic flux, when the electrons are injected and collected at the same node. Finally, we point out that a recent realization of a ballistic spin interferometer can be used to obtain a reliable estimate of the magnitude ratio of the two spin-orbit interactions.\bigski
    corecore